Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Synchrotron Radiat ; 1(Pt 1): 37-42, 1994 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16728782

RESUMEN

Glass capillaries have unique properties for guiding X-rays in experiments with micrometer precision. Design considerations of such optics are presented for X-ray applications involving macromolecular crystallography, tomography and high-pressure experiments at the Cornell High Energy Synchrotron Source. The authors propose that crystallography with protein crystals is feasible on a 50 mum or smaller scale using capillary optics along with a cold gas stream and precision rotation stages. For computed tomography experiments, capillary optics can produce X-ray beams on a submicrometer scale. The distribution of X-rays passing through the sample can then be blown up in size with a secondary capillary optic to match the ~10 mum pixel size of CCD detectors. For high-pressure experiments in diamond-anvil cells, mono- and polycapillary optics may provide 1-50 mum diameter beams for diffraction or X-ray absorption fine-structure applications.

2.
Science ; 231(4742): 1136-8, 1986 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-17818543

RESUMEN

X-ray diffraction studies have been carried out on alkali halide samples 10 micrometers in diameter (volume 10(-9) cubic centimeter) subjected to megabar pressures in the diamond anvil cell. Energy-dispersive techniques and a synchrotron source were used. These measurements can be used to detect crystallographic phase transitions. Cesium iodide was subjected to pressures of 95 gigapascals (fractional volume of 46 percent) and rubidium iodide to pressures of 89 gigapascals (fractional volume of 39 percent). Cesium iodide showed a transformation from the cubic B2 phase (cesium chloride structure) to a tetragonal phase and then to an orthorhombic phase, which was stable to 95 gigapascals. Rubidium iodide showed only a transition from the low-pressure cubic B1 phase (sodium chloride structure) to the B2 phase, which was stable up to 89 gigapascals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA