Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Water Res ; 243: 120392, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37542781

RESUMEN

Detailed molecular composition of solid phase extracted dissolved organic matter (SPEDOM) collected from fractured-rock groundwater was compared to connected surface river water at two different watersheds in the unconfined chalk aquifer of Champagne in France using full scan ultrahigh resolution electrospray and photoionization Fourier transform ion cyclotron mass spectrometry (FT-ICR MS), Orbitrap tandem MS (MS/MS) and 1H magnetic resonance spectroscopy (NMR). 1H NMR spectroscopy indicated that groundwater SPEDOM carried a higher contribution of aliphatic compounds while surface river waters SPEDOM were enriched in carboxyl-rich alicyclic molecules (CRAM), acetate derivatives and oxygenated units. Furthermore, we show here that use of photoionization (APPI(+)) in aquifer studies is key, ionizing about eight times more compounds than ESI in surface river water samples, specifically targeting the dissolved organic nitrogen pool, accounting for more than 50% of the total molecular space, as well as a non-polar, more aromatic fraction; with little overlap with compounds detected by ESI(-) FT-ICR MS. On the other hand, groundwater SPEDOM samples did not show similar selectivity as less molecular diversity was observed in APPI compared to ESI. Mass-difference transformation networks (MDiNs) applied to ESI(-) and APPI(+) FT-ICR MS datasets provided an overview of the biogeochemical relationships within the aquifer, revealing chemical diversity and microbial/abiotic reactions. Finally, the combination of ESI(-) FT-ICR MS and detailed Orbitrap MS/MS analysis revealed a pool of polar, anthropogenic sulfur-containing surfactants in the groundwaters, likely originating from agricultural runoff. Overall, our study shows that in this aquifer, groundwater SPEDOM contains a significantly reduced pool of organic compounds compared to surface river waters, possibly related to a combination of lack of sunlight and adsorption of high O/C formulas to mineral surfaces.


Asunto(s)
Materia Orgánica Disuelta , Agua Subterránea , Espectrometría de Masas en Tándem , Oscuridad , Espectroscopía de Resonancia Magnética , Agua
2.
Geobiology ; 11(3): 215-23, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23418943

RESUMEN

Organic molecules from known biological sources (biomarkers) that are preserved over geological time are critical tools in the study of past conditions and events on earth. Polar molecules are typically recycled rapidly in marine environments and do not survive burial within aquatic sediments in unambiguously recognizable form. As such, geological biomarkers are formed almost exclusively from precursor biomolecules that have been altered, limiting their utility as paleoproxies. Here, we report that nitrogen-rich aliphatic long-chain polyamines (LCPAs), biosynthesized by diatoms in species-specific assemblages for the precipitation of nanopatterned siliceous cell walls (frustules), are preserved unaltered in the oldest available diatom fossils dating to the Lower Cretaceous (early Albian, 115-110 Ma). We further show that the cumulative LCPA pool accounts for 60% of the total C and 80% of the total N preserved in the Cretaceous age sediments. We suggest that silica glass formation by diatoms constitutes an important preservation mechanism for source-specific, polar biomolecules, protecting them indefinitely by encapsulation within the silicified frustule. LCPAs are a unique, source-specific carbon and nitrogen archive of diatom biomass, offering a promising tool for reconstruction of global cycles of carbon and nitrogen over geological timescales.


Asunto(s)
Biomarcadores/análisis , Diatomeas/química , Fósiles , Sedimentos Geológicos/análisis , Poliaminas/análisis , Dióxido de Silicio/análisis , Carbono/análisis , Cromatografía Líquida de Alta Presión , Diatomeas/ultraestructura , Espectrometría de Masas , Microscopía Electrónica de Rastreo , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA