Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Biol Sci ; 277(1701): 3755-64, 2010 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-20630887

RESUMEN

Recent research has highlighted that positive biodiversity-ecosystem functioning relationships hold for all groups of organisms, including microbes. Yet, we still lack understanding regarding the drivers of microbial diversity, in particular, whether diversity of microbial communities is a matter of local factors, or whether metacommunities are of similar importance to what is known from higher organisms. Here, we explore the driving forces behind spatial variability in lake phytoplankton diversity in Fennoscandia. While phytoplankton biovolume is best predicted by local phosphorus concentrations, phytoplankton diversity (measured as genus richness, G) only showed weak correlations with local concentrations of total phosphorus. By estimating spatial averages of total phosphorus concentrations on various scales from an independent, spatially representative lake survey, we found that close to 70 per cent of the variability in local phytoplankton diversity can be explained by regionally averaged phosphorus concentrations on a scale between 100 and 400 km. Thus, the data strongly indicate the existence of metacommunities on this scale. Furthermore, we show a strong dependency between lake productivity and spatial community turnover. Thus, regional productivity affects beta-diversity by controlling spatial community turnover, resulting in scale-dependent productivity-diversity relationships. As an illustration of the interaction between local and regional processes in shaping microbial diversity, our results offer both empirical support and a plausible mechanism for the existence of common scaling rules in both the macrobial and the microbial worlds. We argue that awareness of regional species pools in phytoplankton and other unicellular organisms may critically improve our understanding of ecosystems and their susceptibility to anthropogenic stressors.


Asunto(s)
Biodiversidad , Ecosistema , Fitoplancton/crecimiento & desarrollo , Agua Dulce , Fósforo/análisis , Fitoplancton/genética , Fitoplancton/metabolismo , Análisis de Regresión , Países Escandinavos y Nórdicos
2.
Proc Natl Acad Sci U S A ; 105(13): 5134-8, 2008 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-18375765

RESUMEN

The relationship between species diversity and ecosystem functioning has been debated for decades, especially in relation to the "macroscopic" realm (higher plants and metazoans). Although there is emerging consensus that diversity enhances productivity and stability in communities of higher organisms; however, we still do not know whether these relationships apply also for communities of unicellular organisms, such as phytoplankton, which contribute approximately 50% to the global primary production. We show here that phytoplankton resource use, and thus carbon fixation, is directly linked to the diversity of phytoplankton communities. Datasets from freshwater and brackish habitats show that diversity is the best predictor for resource use efficiency of phytoplankton communities across considerable environmental gradients. Furthermore, we show that the diversity requirement for stable ecosystem functioning scales with the nutrient level (total phosphorus), as evidenced by the opposing effects of diversity (negative) and resource level (positive) on the variability of both resource use and community composition. Our analyses of large-scale observational data are consistent with experimental and model studies demonstrating causal effects of microbial diversity on functional properties at the system level. Our findings point at potential linkages between eutrophication and pollution-mediated loss of phytoplankton diversity. Factors reducing phytoplankton diversity may have direct detrimental effects on the amount and predictability of aquatic primary production.


Asunto(s)
Conducta Animal/fisiología , Fitoplancton/fisiología , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA