Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Intervalo de año de publicación
1.
Preprint en Inglés | medRxiv | ID: ppmedrxiv-21253012

RESUMEN

While a substantial proportion of adults infected with SARS-CoV-2 progress to develop severe disease, children rarely manifest respiratory complications. Therefore, understanding differences in the local and systemic response to SARS-CoV-2 infection between children and adults may provide important clues about the pathogenesis of SARS-CoV-2 infection. To address this, we first generated a healthy reference multi-omics single cell data set from children (n=30) in whom we have profiled triple matched samples: nasal and tracheal brushings and PBMCs, where we track the developmental changes for 42 airway and 31 blood cell populations from infancy, through childhood to adolescence. This has revealed the presence of naive B and T lymphocytes in neonates and infants with a unique gene expression signature bearing hallmarks of innate immunity. We then contrast the healthy reference with equivalent data from severe paediatric and adult COVID-19 patients (total n=27), from the same three types of samples: upper and lower airways and blood. We found striking differences: children with COVID-19 as opposed to adults had a higher proportion of innate lymphoid and non-clonally expanded naive T cells in peripheral blood, and a limited interferon-response signature. In the airway epithelium, we found the highest viral load in goblet and ciliated cells and describe a novel inflammatory epithelial cell population. These cells represent a transitional regenerative state between secretory and ciliated cells; they were found in healthy children and were enriched in paediatric and adult COVID-19 patients. Epithelial cells display an antiviral and neutrophil-recruiting gene signature that is weaker in severe paediatric versus adult COVID-19. Our matched blood and airway samples allowed us to study the spatial dynamics of infection. Lastly, we provide a user-friendly interface for this data1 as a highly granular reference for the study of immune responses in airways and blood in children.

2.
Preprint en Inglés | bioRxiv | ID: ppbiorxiv-167049

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a global public health emergency. COVID-19 typically manifests as a respiratory illness but an increasing number of clinical reports describe gastrointestinal (GI) symptoms. This is particularly true in children in whom GI symptoms are frequent and viral shedding outlasts viral clearance from the respiratory system. By contrast, fetuses seem to be rarely affected by COVID-19, although the virus has been detected in placentas of affected women. These observations raise the question of whether the virus can infect and replicate within the stomach once ingested. Moreover, it is not yet clear whether active replication of SARS-CoV-2 is possible in the stomach of children or in fetuses at different developmental stages. Here we show the novel derivation of fetal gastric organoids from 8-21 post-conception week (PCW) fetuses, and from pediatric biopsies, to be used as an in vitro model for SARS-CoV-2 gastric infection. Gastric organoids recapitulate human stomach with linear increase of gastric mucin 5AC along developmental stages, and expression of gastric markers pepsinogen, somatostatin, gastrin and chromogranin A. In order to investigate SARS-CoV-2 infection with minimal perturbation and under steady-state conditions, we induced a reversed polarity in the gastric organoids (RP-GOs) in suspension. In this condition of exposed apical polarity, the virus can easily access viral receptor angiotensin-converting enzyme 2 (ACE2). The pediatric RP-GOs are fully susceptible to infection with SARS-CoV-2, where viral nucleoprotein is expressed in cells undergoing programmed cell death, while the efficiency of infection is significantly lower in fetal organoids. The RP-GOs derived from pediatric patients show sustained robust viral replication of SARS-CoV-2, compared with organoids derived from fetal stomachs. Transcriptomic analysis shows a moderate innate antiviral response and the lack of differentially expressed genes belonging to the interferon family. Collectively, we established the first expandable human gastric organoid culture across fetal developmental stages, and we support the hypothesis that fetal tissue seems to be less susceptible to SARS-CoV-2 infection, especially in early stages of development. However, the virus can efficiently infect gastric epithelium in pediatric patients, suggesting that the stomach might have an active role in fecal-oral transmission of SARS-CoV-2.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA