Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202413089, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39265063

RESUMEN

Polymersomes are synthetic vesicles that mimic the architecture of cellular compartments such as the cell membrane and organelles. These biomimetic compartments facilitate the creation of cell-like chemical systems, including microreactors and synthetic organelles. However, the construction of hierarchical multi-compartment systems remains challenging and typically requires the encapsulation of pre-formed vesicles within a host compartment. Here, we report the formation of multicompartment polymersomes with a vesicle-in-vesicle architecture achieved through self-division induced by short peptides incorporated into the vesicle membrane. A phenylalanine-phenylalanine-methionine (FFM) tripeptide was designed and encapsulated into the polymersome via microfluidics. We demonstrate that vesicle self-division occurs due to peptide incorporation into the membrane in response to pH changes. This self-division creates internal vesicles capable of colocalizing enzymes. The hybrid polymer-peptide system described here provides a straightforward method for developing subcompartmentalized systems, paving the way for engineering microreactors with life-like properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA