Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 10(1): 3304, 2020 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32094379

RESUMEN

Millions are exposed to the human immunodeficiency virus type 1 (HIV-1) every year, but not all acquire the virus, suggesting a potential role for host genetics in the moderation of HIV-1 acquisition. Here, we analyzed summary statistics from the largest genome-wide association study of HIV-1 acquisition to-date, consisting of 6,334 infected patients and 7,247 population controls, to advance our understanding of the genetic mechanisms implicated in this trait. We found that HIV-1 acquisition is polygenic and heritable, with SNP heritability estimates explaining 28-42% of the variance in this trait at a population level. Genetic correlations alongside UK Biobank data revealed associations with smoking, prospective memory and socioeconomic traits. Gene-level enrichment analysis identified EF-hand calcium binding domain 14 as a novel susceptibility gene for HIV-1 acquisition. We also observed that susceptibility variants for HIV-1 acquisition were significantly enriched for genes expressed in T-cells, but also in striatal and hippocampal neurons. Finally, we tested how polygenic risk scores for HIV-1 acquisition influence blood levels of 35 inflammatory markers in 406 HIV-1-negative individuals. We found that higher genetic risk for HIV-1 acquisition was associated with lower levels of C-C motif chemokine ligand 17. Our findings corroborate a complex model for HIV-1 acquisition, whereby susceptibility is partly heritable and moderated by specific behavioral, cellular and immunological parameters.


Asunto(s)
Conducta , Genética de Población , Infecciones por VIH/genética , Infecciones por VIH/inmunología , VIH-1/inmunología , Quimiocina CCL17/sangre , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Infecciones por VIH/sangre , Humanos , Herencia Multifactorial/genética , Neostriado/metabolismo , Neuronas/metabolismo , Factores Socioeconómicos , Linfocitos T/metabolismo
2.
Biol Psychiatry ; 86(2): 120-130, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31097295

RESUMEN

BACKGROUND: The 5'-nucleotidase, cytosolic II gene (NT5C2, cN-II) is associated with disorders characterized by psychiatric and psychomotor disturbances. Common psychiatric risk alleles at the NT5C2 locus reduce expression of this gene in the fetal and adult brain, but downstream biological risk mechanisms remain elusive. METHODS: Distribution of the NT5C2 protein in the human dorsolateral prefrontal cortex and cortical human neural progenitor cells (hNPCs) was determined using immunostaining, publicly available expression data, and reverse transcriptase quantitative polymerase chain reaction. Phosphorylation quantification of adenosine monophosphate-activated protein kinase (AMPK) alpha (Thr172) and ribosomal protein S6 (Ser235/Ser236) was performed using Western blotting to infer the degree of activation of AMPK signaling and the rate of protein translation. Knockdowns were induced in hNPCs and Drosophila melanogaster using RNA interference. Transcriptomic profiling of hNPCs was performed using microarrays, and motility behavior was assessed in flies using the climbing assay. RESULTS: Expression of NT5C2 was higher during neurodevelopment and was neuronally enriched in the adult human cortex. Knockdown in hNPCs affected AMPK signaling, a major nutrient-sensing mechanism involved in energy homeostasis, and protein translation. Transcriptional changes implicated in protein translation were observed in knockdown hNPCs, and expression changes to genes related to AMPK signaling and protein translation were confirmed using reverse transcriptase quantitative polymerase chain reaction. The knockdown in Drosophila was associated with drastic climbing impairment. CONCLUSIONS: We provide an extensive neurobiological characterization of the psychiatric risk gene NT5C2, describing its previously unknown role in the regulation of AMPK signaling and protein translation in neural stem cells and its association with Drosophila melanogaster motility behavior.


Asunto(s)
5'-Nucleotidasa/genética , Proteínas Quinasas Activadas por AMP/genética , Trastornos Mentales/genética , Células-Madre Neurales/metabolismo , Biosíntesis de Proteínas/genética , Transducción de Señal/genética , Adulto , Animales , Drosophila melanogaster , Técnicas de Silenciamiento del Gen , Humanos , Actividad Motora/genética , Trastornos del Movimiento/genética , Trastornos del Movimiento/psicología , Fosforilación , Interferencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA