Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
1.
Neurobiol Dis ; 201: 106665, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39277144

RESUMEN

Circulating extracellular vesicles (EVs) can participate in innate repair processes triggered after intracerebral hemorrhage (ICH). We aimed to describe changes in the proteomic profile of circulating EVs between the acute and subacute phases of ICH and to compare the findings depending on outcomes, as an approach to unraveling such repair mechanisms. This was a prospective observational study including patients with non-traumatic supratentorial ICH. Exclusion criteria were previous disability, signs of herniation on baseline computed tomography, or limited life expectancy. EVs were isolated from blood samples at 24 h and 7 days after symptom onset. After 6-months' follow-up, patients were dichotomized into poor and good outcomes, defining good as an improvement of >10 points or > 50 % on the National Institutes of Health Stroke Scale and a modified Rankin Scale of 0-2. The protein cargo was analyzed by quantitative mass spectrometry and compared according to outcomes. Forty-four patients completed follow-up, 16 (35.5 %) having good outcomes. We identified 1321 proteins in EVs, 37 with differential abundance. In patients with good outcomes, proteins related to stress response (DERA, VNN2, TOMM34) and angiogenesis (RHG01) had increased abundance at 7 days. EVs from patients with poor outcomes showed higher levels of acute-phase reactants (CRP, SAA2) at 7 days compared with 24 h. In conclusion, the protein content of circulating EVs in patients with ICH changes over time, the changes varying depending on the clinical outcome, with greater abundance of proteins potentially involved in the repair processes of patients with good outcomes.

2.
Meat Sci ; 217: 109618, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39096797

RESUMEN

Recent advances in "omics" technologies have enabled the identification of new beef quality biomarkers and have also allowed for the early detection of quality defects such as dark-cutting beef, also known as DFD (dark, firm, and dry) beef. However, most of the studies conducted were carried out on a small number of animals and mostly applied gel-based proteomics. The present study proposes for the first time a Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) proteomics approach to characterize and comprehensively quantify the post-mortem muscle proteome of DFD (pH24 ≥ 6.2) and CONTROL (5.4 ≤ pH24 ≤ 5.6) beef samples within the largest database of DFD/CONTROL beef samples to date (26 pairs of the Longissimus thoracis muscle samples of young bulls from Asturiana de los Valles breed, n = 52). The pairwise comparison yielded 35 proteins that significantly differed in their abundances between the DFD and CONTROL samples. Chemometrics methods using both PLS-DA and OPLS-DA revealed 31 and 36 proteins with VIP > 2.0, respectively. The combination of different statistical methods these being Volcano plot, PLS-DA and OPLS-DA allowed us to propose 16 proteins as good candidate biomarkers of DFD beef. These proteins are associated with interconnected biochemical pathways related to energy metabolism (DHRS7B and CYB5R3), binding and signaling (RABGGTA, MIA3, BPIFA2B, CAP2, APOBEC2, UBE2V1, KIR2DL1), muscle contraction, structure and associated proteins (DMD, PFN2), proteolysis, hydrolases, and activity regulation (AGT, C4A, GLB1, CAND2), and calcium homeostasis (ANXA6). These results evidenced the potential of SWATH-MS and chemometrics to accurately identify novel biomarkers for meat quality defects, providing a deeper understanding of the molecular mechanisms underlying dark-cutting beef condition.


Asunto(s)
Biomarcadores , Músculo Esquelético , Proteómica , Carne Roja , Animales , Bovinos , Carne Roja/análisis , Biomarcadores/análisis , Proteómica/métodos , Masculino , Músculo Esquelético/química , Espectrometría de Masas/métodos , Proteoma/análisis , Proteínas Musculares/análisis
4.
Circ Arrhythm Electrophysiol ; 17(9): e012683, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39212041

RESUMEN

BACKGROUND: Adipocyte FABP4 (fatty acid-binding protein 4) is augmented in the epicardial stroma of patients with long-standing persistent atrial fibrillation. Because this molecule is released mainly by adipocytes, our objective was to study its role in atrial cardiomyopathy, focusing our attention on fibrosis, metabolism, and electrophysiological changes. These results might clarify the role of adiposity as a mediator of atrial cardiomyopathy. METHODS: We used several preclinical cellular models, epicardial and subcutaneous stroma primary cell cultures from patients undergoing open heart surgery, human atrial fibroblasts, atrial cardiomyocytes derived from human induced pluripotent stem cells and isolated from adult mice, and Nav1.5 transfected Chinese hamster ovary cells. Fibrosis, glucose, mitochondrial and adipogenesis activity, gene expression, and proteomics were determined by wound healing, enzymatic, colorimetric, fluorescence assays, real-time quantitative polymerase chain reaction, and TripleTOF proteomics. Molecular changes were analyzed by Raman confocal microspectroscopy, calcium dynamics by confocal microscopy, and ion currents by patch clamp. Epicardial, subcutaneous, and atrial fibroblasts and cardiomyocytes were incubated with FABP4 at 100 ng/mL. RESULTS: Our results showed that FABP4 induced fibrosis, glucose metabolism, and lipid accumulation on epicardial and subcutaneous stroma cells and atrial fibroblasts. Besides, it modified lipid content and calcium dynamics in atrial cardiomyocytes without effects on INa. CONCLUSIONS: FABP4 exerts fibrotic and metabolic changes on epicardial stroma and modifies lipid content and calcium dynamic on atrial cardiomyocytes. These results suggest its possible role as an atrial cardiomyopathy mediator.


Asunto(s)
Proteínas de Unión a Ácidos Grasos , Fibrosis , Miocitos Cardíacos , Proteínas de Unión a Ácidos Grasos/metabolismo , Proteínas de Unión a Ácidos Grasos/genética , Animales , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Células Cultivadas , Fibroblastos/metabolismo , Fibroblastos/patología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/genética , Cardiomiopatías/fisiopatología , Metabolismo de los Lípidos , Células CHO , Cricetulus , Masculino , Ratones , Pericardio/metabolismo , Pericardio/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Señalización del Calcio , Calcio/metabolismo , Atrios Cardíacos/metabolismo , Atrios Cardíacos/patología , Atrios Cardíacos/fisiopatología , Femenino , Proteómica/métodos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/patología
5.
Mol Cell Proteomics ; : 100834, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39216661

RESUMEN

BACKGROUND: Immunotherapy has improved survival rates in cancer patients, but identifying those who will respond to treatment remains a challenge. Recent advances in proteomic technologies have enabled the identification and quantification of nearly all expressed proteins in a single experiment. Integration of mass spectrometry with other high-throughput technologies has paved the way for comprehensive and systematic analysis of the plasma proteome in cancer, facilitating early diagnosis and personalized treatment. In this context, the objective of our study was to investigate the predictive and prognostic value of plasma proteome analysis using the SWATH-MS (Sequential Window Acquisition of All Theoretical Mass Spectra) strategy in newly diagnosed NSCLC patients who received pembrolizumab therapy. METHODS: For this purpose, 64 newly diagnosed advanced NSCLC patients treated with pembrolizumab therapy were enrolled and blood samples were collected from all patients before and during therapy. In total 171 blood samples were collected, and plasma samples were analysed employing SWATH-MS strategy. Next, we compared the plasma protein expression of metastatic NSCLC patients prior to receiving pembrolizumab treatment and divided the cohort into two groups in order to identify a proteomic signature that allow us to predict immunotherapy response. RESULTS: Proteomic analyses by SWATH-MS strategy allow us to identified 324 differentially expressed proteins between responder and non-responder patients. In addition, we developed a predictive model and found a combination of seven proteins, including ATG9A, DCDC2, HPS5, FIL1L, LZTL1, PGTA, and SPTN2, with stronger predictive value than PD-L1 expression alone. Additionally, survival analyses showed that low levels of ATG9A, DCDC2, and HPS5 were associated with longer progression-free survival (PFS) and overall survival (OS), while low levels of SPTN2 were associated with worse OS. CONCLUSIONS: Our work highlights the potential value of proteomic technologies to detect predictive biomarkers in blood samples of NSCLC patients. These analyses shed light on the correlation between the response to immunotherapy in patients with NSCLC and the set of 7 proteins.

6.
Int J Mol Sci ; 25(14)2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-39062782

RESUMEN

Sham control groups are essential in experimental animal studies to reduce the influence of surgical intervention. The intraluminal filament procedure is one of the most common models of middle cerebral artery occlusion (MCAO) used in the study of brain ischemia. However, a sham group is usually not included in the experimental design of these studies. In this study, we aimed to evaluate the relevance of the sham group by analyzing and comparing the brain protein profiles of the sham and MCAO groups. In the sham group, 98 dysregulated proteins were detected, compared to 171 in the ischemic group. Moreover, a comparative study of protein profiles revealed the existence of a pool of 57 proteins that appeared to be dysregulated in both sham and ischemic animals. These results indicated that the surgical procedure required for the intraluminal occlusion of the middle cerebral artery (MCA) induces changes in brain protein expression that are not associated with ischemic lesions. This study highlights the importance of including sham control groups in the experimental design, to ensure that surgical intervention does not affect the therapeutic target under study.


Asunto(s)
Isquemia Encefálica , Encéfalo , Infarto de la Arteria Cerebral Media , Proteómica , Animales , Proteómica/métodos , Encéfalo/metabolismo , Isquemia Encefálica/metabolismo , Infarto de la Arteria Cerebral Media/metabolismo , Masculino , Ratas , Modelos Animales de Enfermedad , Proteoma/metabolismo
8.
Int J Pharm ; 662: 124516, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39067549

RESUMEN

Uveitis is a group of inflammatory ocular pathologies. Endotoxin-Induced Uveitis (EIU) model represent a well-known model induced by administration of Lipopolysaccharide (LPS). The aim is to characterize two models of EIU through two routes of administration with novel noninvasive imaging techniques. 29 rats underwent Intraocular Pressure (IOP) measurements, Optical Coherence Tomography (OCT), proteomic analysis, and Positron Emission Tomography and Computed Tomography (PET/CT). Groups included healthy controls (C), BSS administered controls (Ci), systemically induced EIU with LPS (LPSs), and intravitreally induced EIU with LPS (LPSi) for IOP, OCT, and proteomic studies. For 18F-FDG PET/CT study, animals were divided into FDG-C, FDG-LPSs and FDG-LPSi groups and scanned using a preclinical PET/CT system. LPSi animals exhibited higher IOP post-induction compared to C and LPSs groups. LPSi showed increased cellular infiltrate, fibrotic membranes, and iris inflammation. Proinflammatory proteins were more expressed in EIU models, especially LPSi. PET/CT indicated higher eye uptake in induced models compared to FDG-C. FDG-LPSi showed higher eye uptake than FDG-LPSs but systemic uptake was higher in FDG-LPSs due to generalized inflammation. OCT is valuable for anterior segment assessment in experimental models. 18F-FDG PET/CT shows promise as a noninvasive biomarker for ocular inflammatory diseases. Intravitreal induction leads to higher ocular inflammation. These findings offer insights for future inflammatory disease research and drug studies.


Asunto(s)
Modelos Animales de Enfermedad , Presión Intraocular , Lipopolisacáridos , Tomografía Computarizada por Tomografía de Emisión de Positrones , Proteómica , Tomografía de Coherencia Óptica , Uveítis , Animales , Uveítis/inducido químicamente , Uveítis/diagnóstico por imagen , Uveítis/metabolismo , Tomografía de Coherencia Óptica/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Proteómica/métodos , Lipopolisacáridos/toxicidad , Presión Intraocular/efectos de los fármacos , Ratas , Masculino , Fluorodesoxiglucosa F18/administración & dosificación , Endotoxinas/toxicidad , Ratas Sprague-Dawley
9.
Mol Metab ; 85: 101962, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38815625

RESUMEN

OBJECTIVE: p63 is a transcription factor involved in multiple biological functions. In the liver, the TAp63 isoform induces lipid accumulation in hepatocytes. However, the role of liver TAp63 in the progression of metabolic dysfunction-associated steatohepatitis (MASH) with fibrosis is unknown. METHODS: We evaluated the hepatic p63 levels in different mouse models of steatohepatitis with fibrosis induced by diet. Next, we used virogenetic approaches to manipulate the expression of TAp63 in adult mice under diet-induced steatohepatitis with fibrosis and characterized the disease condition. Finally, we performed proteomics analysis in mice with overexpression and knockdown of hepatic TAp63. RESULTS: Levels of TAp63, but not of ΔN isoform, are increased in the liver of mice with diet-induced steatohepatitis with fibrosis. Both preventive and interventional strategies for the knockdown of hepatic TAp63 significantly ameliorated diet-induced steatohepatitis with fibrosis in mice fed a methionine- and choline-deficient diet (MCDD) and choline deficient and high fat diet (CDHFD). The overexpression of hepatic TAp63 in mice aggravated the liver condition in mice fed a CDHFD. Proteomic analysis in the liver of these mice revealed alteration in multiple proteins and pathways, such as oxidative phosphorylation, antioxidant activity, peroxisome function and LDL clearance. CONCLUSIONS: These results indicate that liver TAp63 plays a critical role in the progression of diet-induced steatohepatitis with fibrosis, and its inhibition ameliorates the disease.


Asunto(s)
Hígado Graso , Cirrosis Hepática , Hígado , Ratones Endogámicos C57BL , Animales , Ratones , Hígado/metabolismo , Hígado/patología , Masculino , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Hígado Graso/metabolismo , Hígado Graso/patología , Modelos Animales de Enfermedad , Dieta Alta en Grasa/efectos adversos , Transactivadores/metabolismo , Transactivadores/genética , Proteómica , Metionina/deficiencia , Metionina/metabolismo
10.
Hepatology ; 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38761407

RESUMEN

BACKGROUND AND AIMS: Mitochondrial antiviral signaling protein (MAVS) is a critical regulator that activates the host's innate immunity against RNA viruses, and its signaling pathway has been linked to the secretion of proinflammatory cytokines. However, the actions of MAVS on inflammatory pathways during the development of metabolic dysfunction-associated steatotic liver disease (MASLD) have been little studied. APPROACH AND RESULTS: Liver proteomic analysis of mice with genetically manipulated hepatic p63, a transcription factor that induces liver steatosis, revealed MAVS as a target downstream of p63. MAVS was thus further evaluated in liver samples from patients and in animal models with MASLD. Genetic inhibition of MAVS was performed in hepatocyte cell lines, primary hepatocytes, spheroids, and mice. MAVS expression is induced in the liver of both animal models and people with MASLD as compared with those without liver disease. Using genetic knockdown of MAVS in adult mice ameliorates diet-induced MASLD. In vitro, silencing MAVS blunts oleic and palmitic acid-induced lipid content, while its overexpression increases the lipid load in hepatocytes. Inhibiting hepatic MAVS reduces circulating levels of the proinflammatory cytokine TNFα and the hepatic expression of both TNFα and NFκß. Moreover, the inhibition of ERK abolished the activation of TNFα induced by MAVS. The posttranslational modification O -GlcNAcylation of MAVS is required to activate inflammation and to promote the high lipid content in hepatocytes. CONCLUSIONS: MAVS is involved in the development of steatosis, and its inhibition in previously damaged hepatocytes can ameliorate MASLD.

11.
Nat Commun ; 15(1): 3736, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744818

RESUMEN

The E3 SUMO ligase PIAS2 is expressed at high levels in differentiated papillary thyroid carcinomas but at low levels in anaplastic thyroid carcinomas (ATC), an undifferentiated cancer with high mortality. We show here that depletion of the PIAS2 beta isoform with a transcribed double-stranded RNA-directed RNA interference (PIAS2b-dsRNAi) specifically inhibits growth of ATC cell lines and patient primary cultures in vitro and of orthotopic patient-derived xenografts (oPDX) in vivo. Critically, PIAS2b-dsRNAi does not affect growth of normal or non-anaplastic thyroid tumor cultures (differentiated carcinoma, benign lesions) or cell lines. PIAS2b-dsRNAi also has an anti-cancer effect on other anaplastic human cancers (pancreas, lung, and gastric). Mechanistically, PIAS2b is required for proper mitotic spindle and centrosome assembly, and it is a dosage-sensitive protein in ATC. PIAS2b depletion promotes mitotic catastrophe at prophase. High-throughput proteomics reveals the proteasome (PSMC5) and spindle cytoskeleton (TUBB3) to be direct targets of PIAS2b SUMOylation at mitotic initiation. These results identify PIAS2b-dsRNAi as a promising therapy for ATC and other aggressive anaplastic carcinomas.


Asunto(s)
Mitosis , Proteínas Inhibidoras de STAT Activados , Animales , Femenino , Humanos , Ratones , Carcinoma/genética , Carcinoma/metabolismo , Carcinoma/patología , Línea Celular Tumoral , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas Inhibidoras de STAT Activados/metabolismo , Proteínas Inhibidoras de STAT Activados/genética , Interferencia de ARN , Huso Acromático/metabolismo , Sumoilación , Neoplasias de la Tiroides/genética , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Curr Res Food Sci ; 8: 100757, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736908

RESUMEN

In the literature, there is a paucity of methods and tools that allow the identification of biomarkers of authenticity to discriminate organic and non-organic chicken meat products. Shotgun proteomics is a powerful tool that allows the investigation of the entire proteome of a muscle and/or meat sample. In this study, a shotgun proteomics approach using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) has been applied for the first time to characterize and identify candidate protein biomarkers of authenticity in post-mortem chicken Pectoralis major muscles produced under organic and non-organic farming systems (antibiotic-free). The proteomics characterization was further performed within two chicken strains, these being Ross 308 and Ranger Classic, which differ in their growth rate. From the candidate protein biomarkers, the bioinformatics enrichment analyses revealed significant differences in the muscle proteome between the two chicken strains, which may be related to their genetic background and rearing conditions. The results further provided novel insights on the potential interconnected pathways at interplay that are associated with the differences as a consequence of farming system of chicken strain, such as muscle contraction and energy metabolism. This study could pave the way to more in-depth investigations in proteomics applications to assess chicken meat authenticity and better understand the impact of farming systems on the chicken muscle and meat quality.

14.
Sci Adv ; 10(15): eadm7600, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38608019

RESUMEN

Myelination is essential for neuronal function and health. In peripheral nerves, >100 causative mutations have been identified that cause Charcot-Marie-Tooth disease, a disorder that can affect myelin sheaths. Among these, a number of mutations are related to essential targets of the posttranslational modification neddylation, although how these lead to myelin defects is unclear. Here, we demonstrate that inhibiting neddylation leads to a notable absence of peripheral myelin and axonal loss both in developing and regenerating mouse nerves. Our data indicate that neddylation exerts a global influence on the complex transcriptional and posttranscriptional program by simultaneously regulating the expression and function of multiple essential myelination signals, including the master transcription factor EGR2 and the negative regulators c-Jun and Sox2, and inducing global secondary changes in downstream pathways, including the mTOR and YAP/TAZ signaling pathways. This places neddylation as a critical regulator of myelination and delineates the potential pathogenic mechanisms involved in CMT mutations related to neddylation.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Células de Schwann , Animales , Ratones , Vaina de Mielina/genética , Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Procesamiento Proteico-Postraduccional
15.
Int J Mol Sci ; 25(7)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38612607

RESUMEN

This study aimed to investigate the venom sac extracts (VSEs) of the European hornet (EH) Vespa crabro (Linnaeus, 1758) (Hymenoptera: Vespidae), focusing on the differences between stinging females, gynes (G), and workers (W), at the protein level. Using a quantitative "Sequential Window Acquisition of all Theoretical Fragment Ion Mass Spectra" (SWATH-MS) analysis, we identified and quantified a total of 240 proteins. Notably, within the group, 45.8% (n = 110) showed significant differential expression between VSE-G and VSE-W. In this set, 57.3% (n = 63) were upregulated and 42.7% (n = 47) downregulated in the G. Additionally, the two-hundred quantified proteins from the class Insecta belong to sixteen different species, six of them to the Hymenoptera/Apidae lineage, comprising seven proteins with known potential allergenicity. Thus, phospholipase A1 (Vesp v 1), phospholipase A1 verutoxin 2b (VT-2b), hyaluronidase A (Vesp v 2A), hyaluronidase B (Vesp v 2B), and venom allergen 5 (Vesp v 5) were significantly downregulated in the G, and vitellogenin (Vesp v 6) was upregulated. Overall, 46% of the VSE proteins showed differential expression, with a majority being upregulated in G. Data are available via ProteomeXchange with identifier PXD047955. These findings shed light on the proteomic differences in VSE between EH castes, potentially contributing to our understanding of their behavior and offering insights for allergy research.


Asunto(s)
Hipersensibilidad , Avispas , Femenino , Abejas , Animales , Hialuronoglucosaminidasa , Fosfolipasas A1 , Proteómica
16.
Int J Mol Sci ; 25(6)2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38542208

RESUMEN

Mucopolysaccharidosis type IVA (MPS IVA; Morquio A syndrome) is a rare autosomal recessive lysosomal storage disease (LSD) caused by deficiency of a hydrolase enzyme, N-acetylgalactosamine-6-sulfate sulfatase, and characterized clinically by mainly musculoskeletal manifestations. The mechanisms underlying bone involvement in humans are typically explored using invasive techniques such as bone biopsy, which complicates analysis in humans. We compared bone proteomes using DDA and SWATH-MS in wild-type and MPS IVA knockout mice (UNT) to obtain mechanistic information about the disease. Our findings reveal over 1000 dysregulated proteins in knockout mice, including those implicated in oxidative phosphorylation, oxidative stress (reactive oxygen species), DNA damage, and iron transport, and suggest that lactate dehydrogenase may constitute a useful prognostic and follow-up biomarker. Identifying biomarkers that reflect MPS IVA clinical course, severity, and progression have important implications for disease management.


Asunto(s)
Enfermedades Óseas , Enfermedades de los Cartílagos , Condroitinsulfatasas , Mucopolisacaridosis IV , Humanos , Animales , Ratones , Mucopolisacaridosis IV/metabolismo , Condroitinsulfatasas/genética , Ratones Noqueados
17.
Biochem Pharmacol ; 223: 116157, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38518995

RESUMEN

Recombinant human relaxin-2 (serelaxin) has been widely proven as a novel drug with myriad effects at different cardiovascular levels, which support its potential therapeutic efficacy in several cardiovascular diseases (CVD). Considering these effects, together with the influence of relaxin-2 on adipocyte physiology and adipokine secretion, and the connection between visceral adipose tissue (VAT) dysfunction and the development of CVD, we could hypothesize that relaxin-2 may regulate VAT metabolism. Our objective was to evaluate the impact of a 2-week serelaxin treatment on the proteome and lipidome of VAT from Sprague-Dawley rats. We found that serelaxin increased 1 polyunsaturated fatty acid and 6 lysophosphatidylcholines and decreased 4 triglycerides in VAT employing ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS) based platforms, and that regulates 47 phosphoproteins using SWATH/MS analysis. Through RT-PCR, we found that serelaxin treatment also caused an effect on VAT lipolysis through an increase in the mRNA expression of hormone-sensitive lipase (HSL) and a decrease in the expression of adipose triglyceride lipase (ATGL), together with a reduction in the VAT expression of the fatty acid transporter cluster of differentiation 36 (Cd36). Serelaxin also caused an anti-inflammatory effect in VAT by the decrease in the mRNA expression of tumor necrosis factor α (TNFα), interleukin-1ß (IL-1ß), chemerin, and its receptor. In conclusion, our results highlight the regulatory role of serelaxin in the VAT proteome and lipidome, lipolytic function, and inflammatory profile, suggesting the implication of several mechanisms supporting the potential benefit of serelaxin for the prevention of obesity and metabolic disorders.


Asunto(s)
Enfermedades Cardiovasculares , Relaxina , Humanos , Ratas , Animales , Metabolismo de los Lípidos , Proteoma , Grasa Intraabdominal/metabolismo , Lipidómica , Relaxina/farmacología , Relaxina/metabolismo , Ratas Sprague-Dawley , Vasodilatadores/farmacología , Enfermedades Cardiovasculares/metabolismo , ARN Mensajero/genética , Tejido Adiposo/metabolismo , Proteínas Recombinantes/metabolismo
18.
Transl Res ; 269: 47-63, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38395389

RESUMEN

Fabry disease (FD) is a X-linked rare lysosomal storage disorder caused by deficient α-galactosidase A (α-GalA) activity. Early diagnosis and the prediction of disease course are complicated by the clinical heterogeneity of FD, as well as by the frequently inconclusive biochemical and genetic test results that do not correlate with clinical course. We sought to identify potential biomarkers of FD to better understand the underlying pathophysiology and clinical phenotypes. We compared the plasma proteomes of 50 FD patients and 50 matched healthy controls using DDA and SWATH-MS. The >30 proteins that were differentially expressed between the 2 groups included proteins implicated in processes such as inflammation, heme and haemoglobin metabolism, oxidative stress, coagulation, complement cascade, glucose and lipid metabolism, and glycocalyx formation. Stratification by sex revealed that certain proteins were differentially expressed in a sex-dependent manner. Apolipoprotein A-IV was upregulated in FD patients with complications, especially those with chronic kidney disease, and apolipoprotein C-III and fetuin-A were identified as possible markers of FD with left ventricular hypertrophy. All these proteins had a greater capacity to identify the presence of complications in FD patients than lyso-GB3, with apolipoprotein A-IV standing out as being more sensitive and effective in differentiating the presence and absence of chronic kidney disease in FD patients than renal markers such as creatinine, glomerular filtration rate and microalbuminuria. Identification of these potential biomarkers can help further our understanding of the pathophysiological processes that underlie the heterogeneous clinical manifestations associated with FD.


Asunto(s)
Biomarcadores , Enfermedad de Fabry , Fenotipo , Proteómica , Humanos , Enfermedad de Fabry/sangre , Masculino , Femenino , Biomarcadores/sangre , Adulto , Persona de Mediana Edad , Estudios de Casos y Controles , Caracteres Sexuales , Adulto Joven , Proteoma/metabolismo
19.
Cell Rep Med ; 5(2): 101401, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38340725

RESUMEN

The p63 protein has pleiotropic functions and, in the liver, participates in the progression of nonalcoholic fatty liver disease (NAFLD). However, its functions in hepatic stellate cells (HSCs) have not yet been explored. TAp63 is induced in HSCs from animal models and patients with liver fibrosis and its levels positively correlate with NAFLD activity score and fibrosis stage. In mice, genetic depletion of TAp63 in HSCs reduces the diet-induced liver fibrosis. In vitro silencing of p63 blunts TGF-ß1-induced HSCs activation by reducing mitochondrial respiration and glycolysis, as well as decreasing acetyl CoA carboxylase 1 (ACC1). Ectopic expression of TAp63 induces the activation of HSCs and increases the expression and activity of ACC1 by promoting the transcriptional activity of HER2. Genetic inhibition of both HER2 and ACC1 blunt TAp63-induced activation of HSCs. Thus, TAp63 induces HSC activation by stimulating the HER2-ACC1 axis and participates in the development of liver fibrosis.


Asunto(s)
Células Estrelladas Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Ratones , Animales , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Activación Metabólica , Cirrosis Hepática/genética , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/metabolismo , Fibrosis , Acetil-CoA Carboxilasa/genética , Acetil-CoA Carboxilasa/metabolismo
20.
Cardiovasc Diabetol ; 23(1): 1, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172989

RESUMEN

BACKGROUND: Obesity has increased in recent years with consequences on diabetes and other comorbidities. Thus, 1 out of 3 diabetic patients suffers cardiovascular disease (CVD). The network among glucose, immune system, endothelium and epicardial fat has an important role on pro-inflammatory and thrombotic mechanisms of atherogenesis. Since semaglutide, long-acting glucagon like peptide 1- receptor agonist (GLP-1-RA), a glucose-lowering drug, reduces body weight, we aimed to study its effects on human epicardial fat (EAT), aortic endothelial cells and neutrophils as atherogenesis involved-cardiovascular cells. METHODS: EAT and subcutaneous fat (SAT) were collected from patients undergoing cardiac surgery. Differential glucose consumption and protein cargo of fat-released exosomes, after semaglutide or/and insulin treatment were analyzed by enzymatic and TripleTOF, respectively. Human neutrophils phenotype and their adhesion to aortic endothelial cells (HAEC) or angiogenesis were analyzed by flow cytometry and functional fluorescence analysis. Immune cells and plasma protein markers were determined by flow cytometry and Luminex-multiplex on patients before and after 6 months treatment with semaglutide. RESULTS: GLP-1 receptor was expressed on fat and neutrophils. Differential exosomes-protein cargo was identified on EAT explants after semaglutide treatment. This drug increased secretion of gelsolin, antithrombotic protein, by EAT, modulated CD11b on neutrophils, its migration and endothelial adhesion, induced by adiposity protein, FABP4, or a chemoattractant. Monocytes and neutrophils phenotype and plasma adiposity, stretch, mesothelial, fibrotic, and inflammatory markers on patients underwent semaglutide treatment for 6 months showed a 20% reduction with statistical significance on FABP4 levels and an 80% increase of neutrophils-CD88. CONCLUSION: Semaglutide increases endocrine activity of epicardial fat with antithrombotic properties. Moreover, this drug modulates the pro-inflammatory and atherogenic profile induced by the adiposity marker, FABP4, which is also reduced in patients after semaglutide treatment.


Asunto(s)
Aterosclerosis , Diabetes Mellitus Tipo 2 , Humanos , Células Endoteliales/metabolismo , Tejido Adiposo Epicárdico , Neutrófilos , Fibrinolíticos/uso terapéutico , Aterosclerosis/metabolismo , Péptidos Similares al Glucagón/farmacología , Péptidos Similares al Glucagón/uso terapéutico , Obesidad/metabolismo , Glucosa/metabolismo , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA