Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 664
Filtrar
1.
Lab Chip ; 24(18): 4321-4332, 2024 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-39132885

RESUMEN

The interactions of proteins, membranes, nucleic acid, and metabolites shape a cell's phenotype. These interactions are stochastic, and each cell develops differently, making it difficult to synchronize cell populations. Consequently, studying biological processes at the single- or few-cell level is often necessary to avoid signal dilution below the detection limit or averaging over many cells. We have developed a method to study metabolites and proteins from a small number of or even a single adherent eukaryotic cell. Initially, cells are lysed by short electroporation and aspirated with a microcapillary under a fluorescent microscope. The lysate is placed on a carrier slide for further analysis using liquid-chromatography mass spectrometry (LC-MS) and/or reverse-phase protein (RPPA) approach. This method allows for a correlative measurement of (i) cellular structures and metabolites and (ii) cellular structures and proteins on the single-cell level. The correlative measurement of cellular structure by light-microscopy, metabolites by LC-MS, and targeted protein detection by RPPA was possible on the few-cell level. We discuss the method, potential applications, limitations, and future improvements.


Asunto(s)
Metabolómica , Proteómica , Análisis de la Célula Individual , Humanos , Espectrometría de Masas , Cromatografía Liquida , Animales , Microscopía
3.
Nat Cardiovasc Res ; 3(7): 819-840, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39196177

RESUMEN

The molecular mechanisms of progressive right heart failure are incompletely understood. In this study, we systematically examined transcriptomic changes occurring over months in isolated cardiomyocytes or whole heart tissues from failing right and left ventricles in rat models of pulmonary artery banding (PAB) or aortic banding (AOB). Detailed bioinformatics analyses resulted in the identification of gene signature, protein and transcription factor networks specific to ventricles and compensated or decompensated disease states. Proteomic and RNA-FISH analyses confirmed PAB-mediated regulation of key genes and revealed spatially heterogeneous mRNA expression in the heart. Intersection of rat PAB-specific gene sets with transcriptome datasets from human patients with chronic thromboembolic pulmonary hypertension (CTEPH) led to the identification of more than 50 genes whose expression levels correlated with the severity of right heart disease, including multiple matrix-regulating and secreted factors. These data define a conserved, differentially regulated genetic network associated with right heart failure in rats and humans.


Asunto(s)
Insuficiencia Cardíaca , Ventrículos Cardíacos , Animales , Humanos , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Ratas , Modelos Animales de Enfermedad , Transcriptoma , Masculino , Perfilación de la Expresión Génica , Miocitos Cardíacos/metabolismo , Redes Reguladoras de Genes , Ratas Sprague-Dawley , Hipertensión Pulmonar/genética , Proteómica , Disfunción Ventricular Derecha/genética , Disfunción Ventricular Derecha/fisiopatología
4.
Cell Discov ; 10(1): 76, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39009565

RESUMEN

Multiple processes control quiescence of muscle stem cells (MuSCs), which is instrumental to guarantee long-term replenishment of the stem cell pool. Here, we describe that the G-proteins G12-G13 integrate signals from different G-protein-coupled receptors (GPCRs) to control MuSC quiescence via activation of RhoA. Comprehensive screening of GPCR ligands identified two MuSC-niche-derived factors, endothelin-3 (ET-3) and neurotensin (NT), which activate G12-G13 signaling in MuSCs. Stimulation with ET-3 or NT prevented MuSC activation, whereas pharmacological inhibition of ET-3 or NT attenuated MuSC quiescence. Inactivation of Gna12-Gna13 or Rhoa but not of Gnaq-Gna11 completely abrogated MuSC quiescence, which depleted the MuSC pool and was associated with accelerated sarcopenia during aging. Expression of constitutively active RhoA prevented exit from quiescence in Gna12-Gna13 mutant MuSCs, inhibiting cell cycle entry and differentiation via Rock and formins without affecting Rac1-dependent MuSC projections, a hallmark of quiescent MuSCs. The study uncovers a critical role of G12-G13 and RhoA signaling for active regulation of MuSC quiescence.

5.
Mol Cell Oncol ; 11(1): 2381287, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39036727

RESUMEN

The nucleolar enzyme sirtuin 7 (SIRT7) promotes cancer progression in certain malignancies, likely in part by controlling ribosome biosynthesis. Recently, we discovered that SIRT7 destabilizes the cyclin dependent kinase inhibitor 2A (CDKN2A, known as ARF) within the nucleolus, aiding cancer progression. We propose that targeting nucleolar SIRT7 offers promise for new anti-cancer therapies.

6.
Proc Natl Acad Sci U S A ; 121(25): e2409269121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38870055

RESUMEN

Sirtuin 7 (SIRT7) is a member of the mammalian family of nicotinamide adenine dinucleotide (NAD+)-dependent histone/protein deacetylases, known as sirtuins. It acts as a potent oncogene in numerous malignancies, but the molecular mechanisms employed by SIRT7 to sustain lung cancer progression remain largely uncharacterized. We demonstrate that SIRT7 exerts oncogenic functions in lung cancer cells by destabilizing the tumor suppressor alternative reading frame (ARF). SIRT7 directly interacts with ARF and prevents binding of ARF to nucleophosmin, thereby promoting proteasomal-dependent degradation of ARF. We show that SIRT7-mediated degradation of ARF increases expression of protumorigenic genes and stimulates proliferation of non-small-cell lung cancer (NSCLC) cells both in vitro and in vivo in a mouse xenograft model. Bioinformatics analysis of transcriptome data from human lung adenocarcinomas revealed a correlation between SIRT7 expression and increased activity of genes normally repressed by ARF. We propose that disruption of SIRT7-ARF signaling stabilizes ARF and thus attenuates cancer cell proliferation, offering a strategy to mitigate NSCLC progression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Proliferación Celular , Progresión de la Enfermedad , Neoplasias Pulmonares , Sirtuinas , Humanos , Sirtuinas/metabolismo , Sirtuinas/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Regulación Neoplásica de la Expresión Génica , Línea Celular Tumoral
7.
Chem Sci ; 15(22): 8472-8477, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38846380

RESUMEN

The reaction of [Rh{(E)-CF[double bond, length as m-dash]CHCF3}(PEt3)3] with Zn(CH3)2 results in the methylation of the alkenyl ligand to give [Rh{(E/Z)-C(CH3)[double bond, length as m-dash]CHCF3}(PEt3)3]. Variable temperature NMR studies allowed the identification of a heterobinuclear rhodium-zinc complex as an intermediate, for which the structure [Rh(CH3)(ZnCH3){(Z)-C(CH3)[double bond, length as m-dash]CHCF3}(PEt3)2] is proposed. Based on these stoichiometric reactions, unique Negishi-type catalytic cross-coupling reactions of fluorinated propenes by consecutive C-H and C-F bond activation steps at room temperature were developed. The C-H bond activation steps provide a fluorinated ligand at Rh and deliver the fluorinated product, whereas the C-F bond activation and C-C coupling occur via outer-sphere nucleophilic attack at the fluorinated alkenyl ligand.

8.
J Mol Cell Cardiol ; 193: 53-66, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838815

RESUMEN

The HSP70 co-chaperone BAG3 targets unfolded proteins to degradation via chaperone assisted selective autophagy (CASA), thereby playing pivotal roles in the proteostasis of adult cardiomyocytes (CMs). However, the complex functions of BAG3 for regulating autophagy in cardiac disease are not completely understood. Here, we demonstrate that conditional inactivation of Bag3 in murine CMs leads to age-dependent dysregulation of autophagy, associated with progressive cardiomyopathy. Surprisingly, Bag3-deficient CMs show increased canonical and non-canonical autophagic flux in the juvenile period when first signs of cardiac dysfunction appear, but reduced autophagy during later stages of the disease. Juvenile Bag3-deficient CMs are characterized by decreased levels of soluble proteins involved in synchronous contraction of the heart, including the gap junction protein Connexin 43 (CX43). Reiterative administration of chloroquine (CQ), an inhibitor of canonical and non-canonical autophagy, but not inactivation of Atg5, restores normal concentrations of soluble cardiac proteins in juvenile Bag3-deficient CMs without an increase of detergent-insoluble proteins, leading to complete recovery of early-stage cardiac dysfunction in Bag3-deficient mice. We conclude that loss of Bag3 in CMs leads to age-dependent differences in autophagy and cardiac dysfunction. Increased non-canonical autophagic flux in the juvenile period removes soluble proteins involved in cardiac contraction, leading to early-stage cardiomyopathy, which is prevented by reiterative CQ treatment.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Autofagia , Cardiomiopatías , Miocitos Cardíacos , Animales , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiomiopatías/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/deficiencia , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratones , Miocardio/metabolismo , Miocardio/patología , Cloroquina/farmacología , Ratones Noqueados
9.
Chemistry ; 30(41): e202401571, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-38757784

RESUMEN

The κ2-(P,N)-phosphine ligand precursor NH(CH2CH2PCy2)2 can be used for the synthesis of the rhodium(I) complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NHC2H4PCy2}][Cl] (1). The deprotonated complex [Rh(CO){ĸ3-(P,N,P)-Cy2PC2H4NC2H4PCy2}] (2) shows a cooperative reactivity of the PNP ligand in the activation reaction of SO2F2 to yield the rhodium fluorido complex trans-[Rh(F)(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (3) by S-F bond cleavage. It is remarkable that no reaction was observed when 3 was treated with hydrogen sources e. g. dihydrogen, organosilicon compounds such as triethylsilane or TMS-CF3 and different fluorine sources such as SF4 or Selectfluor®. However, the treatment of complex 3 with XeF2 in the presence of CsF resulted in the formation of the unique fluorido rhodium(III) complex cis,trans-[Rh(F)3(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2 (4). In the presence of pyridine(HF)X or BF3 the fluorido complex 3 converted into the dicationic complexes [Rh(CO){ĸ2-(P,P)-Cy2PC2H4N(SO2F)C2H4PCy2}]2[XF]2, X=HF (5) or BF3 (6), respectively.

10.
Pediatr Blood Cancer ; 71(7): e31048, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38693643

RESUMEN

BACKGROUND AND OBJECTIVE: National guidelines recommend that children with sickle cell anemia (SCA) be seen regularly by primary care providers (PCPs) as well as hematologists to receive comprehensive, multidisciplinary care. The objective is to characterize the patterns of primary and hematology care for children with SCA in Michigan. METHODS: Using validated claims definitions, children ages 1-17 years with SCA were identified using Michigan Medicaid administrative claims from 2010 to 2018. We calculated the number of outpatient PCP and hematologist visits per person-year, as well as the proportion of children with at least one visit to a PCP, hematologist, or both a PCP and hematologist annually. Negative binomial regression was used to calculate annual rates of visits for each provider type. RESULTS: A total of 875 children contributed 2889 person-years. Of the total 22,570 outpatient visits, 52% were with a PCP and 34% with a hematologist. Annually, 87%-93% of children had a visit with a PCP, and 63%-85% had a visit with a hematologist. Approximately 66% of total person-years had both visit types within a year. The annual rate ranged from 2.3 to 2.5 for hematologist visits and from 3.7 to 4.1 for PCP visits. CONCLUSIONS: Substantial gaps exist in the receipt of annual hematology care. Given that the majority of children with SCA see a PCP annually, strategies to leverage primary care visits experienced by this population may be needed to increase receipt of SCA-specific services.


Asunto(s)
Anemia de Células Falciformes , Atención Primaria de Salud , Humanos , Anemia de Células Falciformes/terapia , Niño , Masculino , Preescolar , Femenino , Adolescente , Lactante , Atención Primaria de Salud/estadística & datos numéricos , Estados Unidos , Michigan , Hematología , Estudios de Seguimiento , Medicaid/estadística & datos numéricos , Pronóstico
11.
Circ Res ; 134(11): e133-e149, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38639105

RESUMEN

BACKGROUND: The precise origin of newly formed ACTA2+ (alpha smooth muscle actin-positive) cells appearing in nonmuscularized vessels in the context of pulmonary hypertension is still debatable although it is believed that they predominantly derive from preexisting vascular smooth muscle cells (VSMCs). METHODS: Gli1Cre-ERT2; tdTomatoflox mice were used to lineage trace GLI1+ (glioma-associated oncogene homolog 1-positive) cells in the context of pulmonary hypertension using 2 independent models of vascular remodeling and reverse remodeling: hypoxia and cigarette smoke exposure. Hemodynamic measurements, right ventricular hypertrophy assessment, flow cytometry, and histological analysis of thick lung sections followed by state-of-the-art 3-dimensional reconstruction and quantification using Imaris software were used to investigate the contribution of GLI1+ cells to neomuscularization of the pulmonary vasculature. RESULTS: The data show that GLI1+ cells are abundant around distal, nonmuscularized vessels during steady state, and this lineage contributes to around 50% of newly formed ACTA2+ cells around these normally nonmuscularized vessels. During reverse remodeling, cells derived from the GLI1+ lineage are largely cleared in parallel to the reversal of muscularization. Partial ablation of GLI1+ cells greatly prevented vascular remodeling in response to hypoxia and attenuated the increase in right ventricular systolic pressure and right heart hypertrophy. Single-cell RNA sequencing on sorted lineage-labeled GLI1+ cells revealed an Acta2high fraction of cells with pathways in cancer and MAPK (mitogen-activated protein kinase) signaling as potential players in reprogramming these cells during vascular remodeling. Analysis of human lung-derived material suggests that GLI1 signaling is overactivated in both group 1 and group 3 pulmonary hypertension and can promote proliferation and myogenic differentiation. CONCLUSIONS: Our data highlight GLI1+ cells as an alternative cellular source of VSMCs in pulmonary hypertension and suggest that these cells and the associated signaling pathways represent an important therapeutic target for further studies.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Proteína con Dedos de Zinc GLI1 , Animales , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Ratones , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/fisiopatología , Hipertensión Pulmonar/patología , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Ratones Endogámicos C57BL , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratones Transgénicos , Masculino , Humanos , Hipoxia/metabolismo , Hipoxia/fisiopatología
12.
Nucleic Acids Res ; 52(11): 6629-6646, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38567728

RESUMEN

Enzyme activity is determined by various different mechanisms, including posttranslational modifications and allosteric regulation. Allosteric activators are often metabolites but other molecules serve similar functions. So far, examples of long non-coding RNAs (lncRNAs) acting as allosteric activators of enzyme activity are missing. Here, we describe the function of mitolnc in cardiomyocytes, a nuclear encoded long non-coding RNA, located in mitochondria and directly interacting with the branched-chain ketoacid dehydrogenase (BCKDH) complex to increase its activity. The BCKDH complex is critical for branched-chain amino acid catabolism (BCAAs). Inactivation of mitolnc in mice reduces BCKDH complex activity, resulting in accumulation of BCAAs in the heart and cardiac hypertrophy via enhanced mTOR signaling. We found that mitolnc allosterically activates the BCKDH complex, independent of phosphorylation. Mitolnc-mediated regulation of the BCKDH complex constitutes an important additional layer to regulate the BCKDH complex in a tissue-specific manner, evading direct coupling of BCAA metabolism to ACLY-dependent lipogenesis.


Asunto(s)
Aminoácidos de Cadena Ramificada , Cardiomegalia , ARN Largo no Codificante , Animales , Regulación Alostérica , Ratones , Cardiomegalia/metabolismo , Cardiomegalia/genética , Aminoácidos de Cadena Ramificada/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Miocitos Cardíacos/metabolismo , Humanos , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/metabolismo , 3-Metil-2-Oxobutanoato Deshidrogenasa (Lipoamida)/genética , Transducción de Señal , Ratones Endogámicos C57BL , Serina-Treonina Quinasas TOR/metabolismo , Masculino , Ratones Noqueados
13.
Oncogene ; 43(14): 993-1006, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383727

RESUMEN

The Sirtuin family of NAD+-dependent enzymes assumes a pivotal role in orchestrating adaptive responses to environmental fluctuations and stress stimuli, operating at both genomic and metabolic levels. Within this family, SIRT7 emerges as a versatile player in tumorigenesis, displaying both pro-tumorigenic and tumor-suppressive functions in a context-dependent manner. While other sirtuins, such as SIRT1 and SIRT6, exhibit a similar dual role in cancer, SIRT7 stands out due to distinctive attributes that sharply distinguish it from other family members. Among these are a unique key role in regulation of nucleolar functions, a close functional relationship with RNA metabolism and processing -exceptional among sirtuins- and a complex multienzymatic nature, which provides a diverse range of molecular targets. This review offers a comprehensive overview of the current understanding of the role of SIRT7 in various malignancies, placing particular emphasis on the intricate molecular mechanisms employed by SIRT7 to either stimulate or counteract tumorigenesis. Additionally, it delves into the unique features of SIRT7, discussing their potential and specific implications in tumor initiation and progression, underscoring the promising avenue of targeting SIRT7 for the development of innovative anti-cancer therapies.


Asunto(s)
Neoplasias , Sirtuinas , Humanos , Sirtuinas/fisiología , Carcinogénesis/genética , Transformación Celular Neoplásica , Neoplasias/tratamiento farmacológico , Neoplasias/genética
14.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38285624

RESUMEN

Diets that provide a negative dietary anion cation difference (DCAD) and supplement with a vitamin D metabolite 25-OH-D3 (calcidiol) may increase calcium availability at parturition, and enhance piglet survival and performance. This factorial study assessed the effects of DCAD, calcidiol (50 µg/kg), and parity (parity 1 or >1) and their interactions. Large White and Landrace sows (n = 328), parity 1 to 8 were randomly allocated in blocks to treatment diets from day 103 of gestation until day 3 postfarrow: 1) negative DCAD without calcidiol (negative DCAD + no CA), n = 84, 2) negative DCAD with calcidiol (negative DCAD + CA) n = 84, 3) positive DCAD without calcidiol (negative DCAD + no CA), n = 81, and 4) positive DCAD with calcidiol (positive DCAD + CA), n = 79. Negative DCAD diets were acidified with an anionic feed (2 kg/t) and magnesium sulfate (2 kg/t). All treatment diets contained cholecalciferol at 1,000 IU/kg. Dry sow diets contained 14.8% crude protein (CP), 5.4% crude fiber (CF), 0.8% Ca, and 83 mEq/kg DCAD. Treatment diets 1 and 2 contained 17.5% CP, 7.3% CF, 0.8% Ca, and -2 mEq/kg DCAD. Treatment diets 3 and 4 contained 17.4% CP, 7.4% CF, 0.8% Ca, and 68 mEq/kg DCAD. Before farrowing, all negative DCAD sows had lower urine pH than all sows fed a positive DCAD (5.66 ± 0.05 and 6.29 ± 0.05, respectively; P < 0.01); urinary pH was acidified for both DCAD treatments indicating metabolic acidification. The percentage of sows with stillborn piglets was not affected by DCAD, calcidiol, or parity alone but sows fed the negative DCAD + CA diet had a 28% reduction in odds of stillbirth compared to the negative DCAD + no CA diet and even lesser odds to the positive DCAD + CA diet. At day 1 after farrowing, blood gas, and mineral and metabolite concentrations were consistent with feeding a negative DCAD diet and that negative DCAD diets influence energy metabolism, as indicated by increased glucose, cholesterol, and osteocalcin concentrations and reduced nonesterified free fatty acids and 3-hydroxybutyrate concentrations. In the subsequent litter, total piglets born and born alive (14.7 ± 0.3 and 13.8 ± 0.3 piglets, respectively; P = 0.029) was greater for positive DCAD diets compared to negative DCAD diets; and there was an interaction between DCAD, calcidiol, and parity (P = 0.002). Feeding a negative DCAD diet influenced stillbirth, subsequent litter size, and metabolic responses at farrowing. More studies are needed to define optimal diets prefarrowing for sows.


The transition period between late gestation and lactation is critical to farrowing and successful lactation; sows with higher blood calcium have less risk of dystocia. We evaluated transition diets that provided a negative dietary cation­anion difference (DCAD) and supplemented with calcidiol (CA), both of which influence calcium metabolism. Purebred Landrace or Large White sows (n = 328) were enrolled in the experiment and selected sows that were either primiparous (n = 99) or multiparous (n = 229; average parity = 2.59 ± 1.51; parity range = 1 to 8) were fed a dry sow ration until day 103 of gestation and were then fed transition diets until day 3 postfarrowing in a factorial study. The diets were formulated to include 1) negative DCAD + no CA, 2) negative DCAD + CA, 3) positive DCAD + no CA, or 4) positive DCAD + CA. All diets induced a metabolic acidosis as indicated by urinary pH. Sows fed the negative DCAD with added calcidiol had a >28% reduction in odds of stillbirth over negative DCAD + no CA and positive DCAD + CA diets. Following weaning and re-mating, there were 0.9 more piglets born in the subsequent litter for both positive DCAD diets compared to negative DCAD diets. Blood gas, and mineral and metabolite concentrations provided evidence that negative DCAD diets positively influenced energy metabolism.


Asunto(s)
Calcifediol , Enfermedades de los Porcinos , Embarazo , Femenino , Animales , Porcinos , Mortinato/veterinaria , Lactancia , Dieta/veterinaria , Suplementos Dietéticos , Aniones/metabolismo , Cationes/metabolismo , Alimentación Animal/análisis
15.
Methods Mol Biol ; 2752: 245-257, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38194039

RESUMEN

During the last decade a wide range of single-cell and single-nucleus next-generation sequencing techniques have been developed, which revolutionized detection of rare cell populations, enabling creation of comprehensive cell atlases of complex organs and tissues. State-of-the-art methods do not only allow classical transcriptomics of individual cells but also comprise a number of epigenetic approaches, including assessment of chromatin accessibility by single-nucleus Assay for Transposase Accessible Chromatin ATAC-seq (snATAC-seq). The snATAC-seq assay detects "open chromatin," a term for low nucleosome occupancy of genomic regions, which is a prerequisite for effective transcription factor binding. Information about open chromatin at the single-nucleus level helps to recognize epigenetic changes, sometimes before transcription of respective genes occurs. snATAC-seq detects cellular heterogeneity in otherwise still transcriptionally and/or morphologically homogeneous cell populations. Chromatin accessibility assays may be used to detect epigenetic changes in cardiac lineages during heart development, chromatin landscape changes during aging, and epigenetic alterations in heart diseases. Here, we provide an optimized protocol for snATAC-seq of murine hearts. We describe isolation of single nuclei from snap-frozen hearts, provide hints for preparation of libraries suitable for snATAC-seq next-generation sequencing (NGS) using the Chromium 10× platform, and give general recommendations for downstream analysis using conventional bioinformatic pipelines and packages. The protocol should serve as a beginner's guide to generate high-quality snATAC-seq datasets and to perform chromatin accessibility analysis of individual heart-derived cell nuclei.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Cromatina , Animales , Ratones , Cromatina/genética , Corazón , Nucleosomas , Núcleo Celular/genética
16.
PLoS One ; 19(1): e0295641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38215076

RESUMEN

Brain metastasis leads to increased mortality and is a major site of relapse for several cancers, yet the molecular mechanisms of brain metastasis are not well understood. In this study, we established and characterized a new leukemic cell line, FIA10, that metastasizes into the central nervous system (CNS) following injection into the tail vein of syngeneic mice. Mice injected with FIA10 cells developed neurological symptoms such as loss of balance, tremor, ataxic gait and seizures, leading to death within 3 months. Histopathology coupled with PCR analysis clearly showed infiltration of leukemic FIA10 cells into the brain parenchyma of diseased mice, with little involvement of bone marrow, peripheral blood and other organs. To define pathways that contribute to CNS metastasis, global transcriptome and proteome analysis was performed on FIA10 cells and compared with that of the parental stem cell line FDCP-Mix and the related FIA18 cells, which give rise to myeloid leukemia without CNS involvement. 188 expressed genes (RNA level) and 189 proteins were upregulated (log2 ratio FIA10/FIA18 ≥ 1) and 120 mRNAs and 177 proteins were downregulated (log2 ratio FIA10/FIA18 ≤ 1) in FIA10 cells compared with FIA18 cells. Major upregulated pathways in FIA10 cells revealed by biofunctional analyses involved immune response components, adhesion molecules and enzymes implicated in extracellular matrix remodeling, opening and crossing the blood-brain barrier (BBB), molecules supporting migration within the brain parenchyma, alterations in metabolism necessary for growth within the brain microenvironment, and regulators for these functions. Downregulated RNA and protein included several tumor suppressors and DNA repair enzymes. In line with the function of FIA10 cells to specifically infiltrate the brain, FIA10 cells have acquired a phenotype that permits crossing the BBB and adapting to the brain microenvironment thereby escaping immune surveillance. These data and our model system FIA10 will be valuable resources to study the occurrence of brain metastases and may help in the development of potential therapies against brain invasion.


Asunto(s)
Neoplasias Encefálicas , Neoplasias del Sistema Nervioso Central , Ratones , Animales , Transcriptoma , Proteómica , Encéfalo/metabolismo , Barrera Hematoencefálica/metabolismo , Neoplasias del Sistema Nervioso Central/patología , Neoplasias Encefálicas/patología , Perfilación de la Expresión Génica , ARN/metabolismo , Línea Celular , Microambiente Tumoral
17.
Blood ; 143(1): 21-31, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37647633

RESUMEN

ABSTRACT: Patients who undergo human leukocyte antigen-matched unrelated donor (MUD) allogeneic hematopoietic stem cell transplantation (HSCT) with myeloablative conditioning for hematologic malignancies often develop acute graft-versus-host disease (GVHD) despite standard calcineurin inhibitor-based prophylaxis in combination with methotrexate. This trial evaluated a novel human CD24 fusion protein (CD24Fc/MK-7110) that selectively targets and mitigates inflammation due to damage-associated molecular patterns underlying acute GVHD while preserving protective immunity after myeloablative conditioning. This phase 2a, multicenter study evaluated the pharmacokinetics, safety, and efficacy of CD24Fc in combination with tacrolimus and methotrexate in preventing acute GVHD in adults undergoing MUD HSCT for hematologic malignancies. A double-blind, placebo-controlled, dose-escalation phase to identify a recommended dose was followed by an open-label expansion phase with matched controls to further evaluate the efficacy and safety of CD24Fc in preventing acute GVHD. A multidose regimen of CD24Fc produced sustained drug exposure with similar safety outcomes when compared with single-dose regimens. Grade 3 to 4 acute GVHD-free survival at day 180 was 96.2% (95% confidence interval [CI], 75.7-99.4) in the CD24Fc expansion cohort (CD24Fc multidose), compared with 73.6% (95% CI, 63.2-81.4) in matched controls (hazard ratio, 0.1 [95% CI, 0.0-0.6]; log-rank test, P = .03). No participants in the CD24Fc escalation or expansion phases experienced dose-limiting toxicities (DLTs). The multidose regimen of CD24Fc was well tolerated with no DLTs and was associated with high rates of severe acute GVHD-free survival after myeloablative MUD HSCT. This trial was registered at ClinicalTrials.gov as #NCT02663622.


Asunto(s)
Enfermedad Injerto contra Huésped , Neoplasias Hematológicas , Trasplante de Células Madre Hematopoyéticas , Adulto , Humanos , Metotrexato/uso terapéutico , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante Homólogo , Recurrencia Local de Neoplasia/tratamiento farmacológico , Enfermedad Injerto contra Huésped/etiología , Enfermedad Injerto contra Huésped/prevención & control , Acondicionamiento Pretrasplante/efectos adversos
18.
Dietetics (Basel) ; 2(4): 334-343, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38107624

RESUMEN

Systematic and random errors based on self-reported diet may bias estimates of dietary intake. The objective of this pilot study was to describe errors in self-reported dietary intake by comparing 24 h dietary recalls to provided menu items in a controlled feeding study. This feeding study was a parallel randomized block design consisting of a standard diet (STD; 15% protein, 50% carbohydrate, 35% fat) followed by either a high-fat (HF; 15% protein, 25% carbohydrate, 60% fat) or a high-carbohydrate (HC; 15% protein, 75% carbohydrate, 10% fat) diet. During the intervention, participants reported dietary intake in 24 h recalls. Participants included 12 males (seven HC, five HF) and 12 females (six HC, six HF). The Nutrition Data System for Research was utilized to quantify energy, macronutrients, and serving size of food groups. Statistical analyses assessed differences in 24 h dietary recalls vs. provided menu items, considering intervention type (STD vs. HF vs. HC) (Student's t-test). Caloric intake was consistent between self-reported intake and provided meals. Participants in the HF diet underreported energy-adjusted dietary fat and participants in the HC diet underreported energy-adjusted dietary carbohydrates. Energy-adjusted protein intake was overreported in each dietary intervention, specifically overreporting beef and poultry. Classifying misreported dietary components can lead to strategies to mitigate self-report errors for accurate dietary assessment.

19.
Discov Oncol ; 14(1): 181, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37787775

RESUMEN

BACKGROUND: Lung cancer (LC) causes more deaths worldwide than any other cancer type. Despite advances in therapeutic strategies, the fatality rate of LC cases remains high (95%) since the majority of patients are diagnosed at late stages when patient prognosis is poor. Analysis of the International Association for the Study of Lung Cancer (IASLC) database indicates that early diagnosis is significantly associated with favorable outcome. However, since symptoms of LC at early stages are unspecific and resemble those of benign pathologies, current diagnostic approaches are mostly initiated at advanced LC stages. METHODS: We developed a LC diagnosis test based on the analysis of distinct RNA isoforms expressed from the GATA6 and NKX2-1 gene loci, which are detected in exhaled breath condensates (EBCs). Levels of these transcript isoforms in EBCs were combined to calculate a diagnostic score (the LC score). In the present study, we aimed to confirm the applicability of the LC score for the diagnosis of early stage LC under clinical settings. Thus, we evaluated EBCs from patients with early stage, resectable non-small cell lung cancer (NSCLC), who were prospectively enrolled in the EMoLung study at three sites in Germany. RESULTS: LC score-based classification of EBCs confirmed its performance under clinical conditions, achieving a sensitivity of 95.7%, 91.3% and 84.6% for LC detection at stages I, II and III, respectively. CONCLUSIONS: The LC score is an accurate and non-invasive option for early LC diagnosis and a valuable complement to LC screening procedures based on computed tomography.

20.
Science ; 382(6667): eadf0805, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37824667

RESUMEN

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1. Subclass and subtype comparisons showed stronger transcriptomic differences in human L1 and were correlated with strong morphoelectric variability along dimensions distinct from mouse L1 variability. Accompanied by greater layer thickness and other cytoarchitecture changes, these findings suggest that L1 has diverged in evolution, reflecting the demands of regulating the expanded human neocortical circuit.


Asunto(s)
Neocórtex , Animales , Humanos , Ratones , Axones/metabolismo , Interneuronas/metabolismo , Neocórtex/citología , Neocórtex/metabolismo , Células Piramidales/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA