Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comp Physiol B ; 194(4): 501-518, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38967807

RESUMEN

Djungarian hamsters (Phodopus sungorus) living at constant 15 °C Ta in short photoperiod (8:16 h L:D) showed pronounced ultradian rhythms (URs) of metabolic rate (MR), body temperature (Tb) and locomotor activity. The ultradian patterns differed between individuals and varied over time. The period length of URs for MR, Tb and activity was similar although not identical. Wavelet analysis showed that three different URs are existing in parallel, URs of small amplitude and short duration (URsmall), URs of medium amplitude and medium duration (URmedium) and URs of large amplitude (URlarge), superimposed on each other. URlarge were accompanied by an increase in locomotor activity, whereas URsmall and URmedium were of metabolic origin with lacking or delayed responses of activity. An energetic challenge to cold which raised total energy requirements by about 50% did not accelerate the period length of URs, but extended the amplitude of URsmall and URmedium. URlarge corresponds with the URs of activity, feeding and drinking, sleep and arousal as described in previous studies, which are related to midbrain dopaminergic signalling and hypothalamic ultradian signalling. The cause and control of URmedium and URsmall is unknown. Their periods are similar to periods of central and peripheral endocrine ultradian signalling, suggesting a link with URs of metabolism.


Asunto(s)
Temperatura Corporal , Actividad Motora , Phodopus , Ritmo Ultradiano , Animales , Phodopus/fisiología , Ritmo Ultradiano/fisiología , Cricetinae , Masculino , Actividad Motora/fisiología , Fotoperiodo , Metabolismo Basal , Frío , Metabolismo Energético
2.
J Comp Physiol B ; 194(4): 519-535, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38972930

RESUMEN

Ultradian rhythms of metabolism, body temperature and activity are attenuated or disappear completely during torpor in Djungarian hamsters, for all three ultradian periodicities (URsmall, URmedium and URlarge). URsmall and URmedium disappear during entrance into torpor, whereas URlarge disappear later or continue with a low amplitude. This suggests a tight functional link between torpor and the expression of ultradian rhythms, i.e. torpor is achieved by suppression of metabolic rate as well as silencing of ultradian rhythms. Spontaneous torpor is often initiated after an ultradian burst of activity and metabolic rate, beginning with a period of motionless rest and accompanied by a decrease of metabolic rate and body temperature. To extend previous findings on the potential role of the adrenergic system on torpor induction we analysed the influence of the ß3-adrenergic agonist Mirabegron on torpor in Djungarian hamsters, as compared to the influence of the ß-adrenergic antagonist Propranolol. Hamsters were implanted with 10 day release pellets of Mirabegron (0.06 mg day-1) or Propranolol (0.3 mg day-1). Mirabegron transiently supressed and accelerated ultradian rhythms but had no effect on torpor behaviour. Propranolol did not affect torpor behaviour nor the expression of ultradian rhythms with the dosage applied during this study.


Asunto(s)
Phodopus , Letargo , Ritmo Ultradiano , Animales , Letargo/fisiología , Phodopus/fisiología , Cricetinae , Masculino , Ritmo Ultradiano/fisiología , Propranolol/farmacología , Antagonistas Adrenérgicos beta/farmacología , Temperatura Corporal , Actividad Motora , Metabolismo Basal
3.
Proc Biol Sci ; 282(1804): 20142781, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25740890

RESUMEN

We report that two species of mouse-tailed bats (Rhinopoma microphyllum and R. cystops) hibernate for five months during winter in geothermally heated caves with stable high temperature (20°C). While hibernating, these bats do not feed or drink, even on warm nights when other bat species are active. We used thermo-sensitive transmitters to measure the bats' skin temperature in the natural hibernacula and open flow respirometry to measure torpid metabolic rate at different ambient temperatures (Ta, 16-35°C) and evaporative water loss (EWL) in the laboratory. Bats average skin temperature at the natural hibernacula was 21.7 ± 0.8°C, and no arousals were recorded. Both species reached the lowest metabolic rates around natural hibernacula temperatures (20°C, average of 0.14 ± 0.01 and 0.16 ± 0.04 ml O2 g(-1) h(-1) for R. microphyllum and R. cystops, respectively) and aroused from torpor when Ta fell below 16°C. During torpor the bats performed long apnoeas (14 ± 1.6 and 16 ± 1.5 min, respectively) and had a very low EWL. We hypothesize that the particular diet of these bats is an adaptation to hibernation at high temperatures and that caves featuring high temperature and humidity during winter enable these species to survive this season on the northern edge of their world distribution.


Asunto(s)
Cuevas , Quirópteros/fisiología , Metabolismo Energético , Hibernación , Calor , Pérdida Insensible de Agua , Animales
4.
Cell Metab ; 11(4): 273-85, 2010 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-20374960

RESUMEN

The endocannabinoid system (ECS) plays a critical role in obesity development. The pharmacological blockade of cannabinoid receptor type 1 (CB(1)) has been shown to reduce body weight and to alleviate obesity-related metabolic disorders. An unsolved question is at which anatomical level CB(1) modulates energy balance and the mechanisms involved in its action. Here, we demonstrate that CB(1) receptors expressed in forebrain and sympathetic neurons play a key role in the pathophysiological development of diet-induced obesity. Conditional mutant mice lacking CB(1) expression in neurons known to control energy balance, but not in nonneuronal peripheral organs, displayed a lean phenotype and resistance to diet-induced obesity. This phenotype results from an increase in lipid oxidation and thermogenesis as a consequence of an enhanced sympathetic tone and a decrease in energy absorption. In conclusion, CB(1) signaling in the forebrain and sympathetic neurons is a key determinant of the ECS control of energy balance.


Asunto(s)
Metabolismo Energético/fisiología , Obesidad/fisiopatología , Prosencéfalo/metabolismo , Receptor Cannabinoide CB1/metabolismo , Transducción de Señal/fisiología , Sistema Nervioso Simpático/metabolismo , Análisis de Varianza , Animales , Temperatura Corporal , Citrato (si)-Sintasa/metabolismo , ADN Mitocondrial/genética , Técnica del Anticuerpo Fluorescente , Hiperfagia/complicaciones , Immunoblotting , Hibridación in Situ , Ratones , Ratones Noqueados , Modelos Biológicos , Obesidad/etiología , Obesidad/metabolismo , Prosencéfalo/fisiología , Receptor Cannabinoide CB1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Termogénesis/fisiología , Microtomografía por Rayos X
5.
Cryobiology ; 60(2): 198-203, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19913528

RESUMEN

During entrance into torpor heart and respiration rates are greatly reduced in parallel with the reduction of metabolic rate, suggesting an involvement of parasympathetic control. We compared the effect of parasympathetic inhibition with the effect of sympathetic inhibition on spontaneous torpor behaviour in the Djungarian hamster. Hamsters were acclimated to short photoperiod and displayed their standard torpor pattern as observed from T(b) records. Parasympathetic inhibition was achieved by a subcutaneous implant of 21-day release pellets with Atropine and the sympathetic noradrenergic pathway was inhibited with a single injection of 6-Hydroxydopamine. Atropine treatment did not affect the occurrence and quality of spontaneous daily torpor at all. However, the reversible sympathetic inhibition by 6-Hydroxydopamine injection resulted in a complete disappearance of torpor for about 6 days. These results conclude that the onset of daily torpor requires an intact noradrenergic signalling of the sympathetic nervous system. We further observed that parasympathetic as well as sympathetic blockade resulted in an immediate abolishment of ultradian rhythms of body temperature. This suggests that the expression of ultradian oscillations in body temperature require a continued interaction of sympathetic and parasympathetic activity.


Asunto(s)
Ciclos de Actividad/fisiología , Phodopus/fisiología , Sistema Nervioso Simpático/fisiología , Aclimatación/fisiología , Adaptación Fisiológica , Animales , Atropina/farmacología , Metabolismo Basal/fisiología , Temperatura Corporal/fisiología , Cricetinae , Hibernación/fisiología , Oxidopamina/farmacología , Sistema Nervioso Parasimpático/efectos de los fármacos , Sistema Nervioso Parasimpático/fisiología , Periodicidad , Fotoperiodo , Transducción de Señal , Sistema Nervioso Simpático/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA