Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 11(1): 4797, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32968057

RESUMEN

The optoelectronic properties of various carbon allotropes and nanomaterials have been well established, while the purely sp-hybridized carbyne remains synthetically inaccessible. Its properties have therefore frequently been extrapolated from those of defined oligomers. Most analyses have, however, focused on the main optical transitions in UV-Vis spectroscopy, neglecting the frequently observed weaker optical bands at significantly lower energies. Here, we report a systematic photophysical analysis as well as computations on two homologous series of oligoynes that allow us to elucidate the nature of these weaker transitions and the intrinsic photophysical properties of oligoynes. Based on these results, we reassess the estimates for both the optical and fundamental gap of carbyne to below 1.6 eV, significantly lower than previously suggested by experimental studies of oligoynes.

2.
J Chem Phys ; 152(10): 104703, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32171206

RESUMEN

Organic-inorganic perovskites are one of the most promising photovoltaic materials for the design of next generation solar cells. The lead-based perovskite prepared with methylammonium and iodide was the first in demonstrating high power conversion efficiency, and it remains one of the most used materials today. However, perovskites prepared by mixing several halides and several cations systematically yield higher efficiencies than "pure" methylammonium lead iodide (MAPbI3) devices. In this work, we unravel the excited-state properties of a mixed-halide (iodide and bromide) and mixed-cation (methylammonium and formamidinium) perovskite. Combining time-resolved photoluminescence, transient absorption, and optical-pump-terahertz-probe experiments with density functional theory calculations, we show that the population of higher-lying excited states in the mixed material increases the lifetime of photogenerated charge carriers upon well above-bandgap excitation. We suggest that alloying different halides and different cations reduces the structural symmetry of the perovskite, which partly releases the selection rules to populate the higher-energy states upon light absorption. Our investigation thus shows that mixed halide perovskites should be considered as an electronically different material than MAPbI3, paving the way toward further materials optimization and improved power conversion efficiency of perovskite solar cells.

3.
ACS Nano ; 12(9): 9116-9125, 2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30138559

RESUMEN

Photocharge generation and formation of long-lived charge carriers are relevant in photosynthesis, photocatalysis, photovoltaics, and organic electronics. A better understanding of the factors that determine these processes in synthetic polymer semiconductors is crucial, but difficult due to their morphological inhomogeneity. Here, we report the formation of exceptionally long-lived photocharges in one-dimensional organic semiconductor nanostructures. These nanostructures consist of chiral oligopeptide-substituted thienothiophene-based chromophores and exhibit a well-defined helical arrangement of these chromophores at their core. The chromophores give rise to spectroscopic H-aggregates and show strong intermolecular excitonic coupling. We demonstrate that all of these parameters are the prerequisites required for the nanostructures to show the efficient formation of polaron-like photocharges upon irradiation with a low-power white light source. The observed charge carriers in the helical nanowires show an unusually long lifetime on the order of several hours and are formed at high concentrations of up to 3 mol % in the absence of any dedicated electron acceptor. They are observed in solution as well as in film and furthermore give rise to a light-induced increase of the macroscopic charge transport. By contrast, no such photocharge generation is observed either in non-aggregating reference systems of the same chromophores or in aggregated but non-helical systems that do not form one-dimensional nanostructures. Our results thus demonstrate a clear correlation between nanoscopic confinement and the generation of long-lived photocharges.

4.
Struct Dyn ; 4(6): 061503, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29308415

RESUMEN

Electron transfer and subsequent charge separation across donor-acceptor heterojunctions remain the most important areas of study in the field of third-generation photovoltaics. In this context, it is particularly important to unravel the dynamics of individual ultrafast processes (such as photoinduced electron transfer, carrier trapping and association, and energy transfer and relaxation), which prevail in materials and at their interfaces. In the frame of the National Center of Competence in Research "Molecular Ultrafast Science and Technology," a research instrument of the Swiss National Science Foundation, several groups active in the field of ultrafast science in Switzerland have applied a number of complementary experimental techniques and computational simulation tools to scrutinize these critical photophysical phenomena. Structural, electronic, and transport properties of the materials and the detailed mechanisms of photoinduced charge separation in dye-sensitized solar cells, conjugated polymer- and small molecule-based organic photovoltaics, and high-efficiency lead halide perovskite solar energy converters have been scrutinized. Results yielded more than thirty research articles, an overview of which is provided here.

5.
Nat Commun ; 7: 12556, 2016 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-27586309

RESUMEN

There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairs-whether they will dissociate to free charges or geminately recombine-is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.

6.
J Phys Chem Lett ; 6(18): 3675-81, 2015 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-26722741

RESUMEN

Organometal halide perovskites have emerged as promising next-generation solar cell technologies presenting outstanding efficiencies. However, many questions concerning their working principles remain to be answered. Here, we present a detailed study of hole transfer dynamics into polymeric hole transporting materials (HTMs), poly(triarylamine) (PTAA), poly(3-hexylthiophee-2,5-diyl (P3HT), and poly[2,6-(4,4-bis(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole) (PCPDTBT). The hole transfer dynamics are shown to occur on a time scale of thousands of picoseconds, being orders of magnitude slower compared to hole transfer involving commonly used Spiro-OMeTAD as HTM.

8.
Chimia (Aarau) ; 65(9): 704-9, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22026184

RESUMEN

Photoinduced electron transfer (PET) across molecular/bulk interfaces has gained attention only recently and is still poorly understood. These interfaces offer an excellent case study, pertinent to a variety of photovoltaic systems, photo- and electrochemistry, molecular electronics, analytical detection, photography, and quantum confinement devices. They play in particular a key role in the emerging fields of third-generation photovoltaic energy converters and artificial photosynthetic systems aimed at the production of solar fuels, creating a need for a better understanding and theoretical treatment of the dynamics and mechanisms of interfacial PET processes. We aim to achieve a fundamental understanding of these phenomena by designing experiments that can be used to test and alter modern theory and computational modeling. One example illustrating recent investigations into the details of the ultrafast processes that form the basis for photoinduced charge separation at a molecular/bulk interface relevant to dye-sensitized solar cells is briefly presented here: Kinetics of interfacial PET and charge recombination processes were measured by fs and ns transient spectroscopy in a heterogeneous donor-bridge-acceptor (D-B-A) system, where D is a Ru(II)(terpyridyl-PO3)(NCS)3 complex, B an oligo-p-phenylene bridge, and A nanocrystalline TiO2. The forward ET reaction was found to be faster than vibrational relaxation of the vibronic excited state of the donor. Instead, the back ET occurred on the micros time scale and involved fully thermalized species. The D-A distance dependence of the electron transfer rate was studied by varying the number of p-phenylene units contained in the bridge moiety. The remarkably low damping factor beta = 0.16 angstroms(-1) observed for the ultrafast charge injection from the dye excited state into the conduction band of TiO2 is attributed to the coupling of electron tunneling with nonequilibrium vibrations redistributed on the bridge, giving rise to polaronic transport of charges from the donor ligand to the acceptor solid oxide surface.

9.
Chimia (Aarau) ; 65(5): 353-5, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21744693

RESUMEN

Nanostructured liquid/solid and solid/solid bulk heterojunctions designed for the conversion of solar energy offer ideal models for the investigation of light-induced ET dynamics at surfaces. Despite significant study of processes leading to charge generation in third-generation solar cells, a conclusive picture of the photophysics of these photovoltaic converters is still missing. More specifically searched is the link between the molecular structure of the interface and the kinetics of surface photoredox reactions. Fundamental scientific issues in this field are addressed by the research project undertaken in the frame of the NCCR MUST endeavor, an outline of which is given here.

10.
Chemphyschem ; 12(1): 145-9, 2011 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-21226195

RESUMEN

Iodine added to iodide-based ionic liquids leads to extraordinarily efficient charge transport, vastly exceeding that expected for such viscous systems. Using terahertz time-domain spectroscopy, in conjunction with dc conductivity, diffusivity and viscosity measurements we unravel the conductivity pathways in 1-methyl-3-propylimidazolium iodide melts. This study presents evidence of the Grotthuss mechanism as a significant contributor to the conductivity, and provides new insights into ion pairing processes as well as the formation of polyiodides. The terahertz and transport results are reunited in a model providing a quantitative description of the conduction by physical diffusion and the Grotthuss bond-exchange process. These novel results are important for the fundamental understanding of conduction in molten salts and for applications where ionic liquids are used as charge-transporting media such as in batteries and dye-sensitized solar cells.


Asunto(s)
Líquidos Iónicos/química , Conductividad Eléctrica , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA