Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 2007, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38453922

RESUMEN

Monoclonal IgG antibodies constitute the fastest growing class of therapeutics. Thus, there is an intense interest to design more potent antibody formats, where long plasma half-life is a commercially competitive differentiator affecting dosing, frequency of administration and thereby potentially patient compliance. Here, we report on an Fc-engineered variant with three amino acid substitutions Q311R/M428E/N434W (REW), that enhances plasma half-life and mucosal distribution, as well as allows for needle-free delivery across respiratory epithelial barriers in human FcRn transgenic mice. In addition, the Fc-engineered variant improves on-target complement-mediated killing of cancer cells as well as both gram-positive and gram-negative bacteria. Hence, this versatile Fc technology should be broadly applicable in antibody design aiming for long-acting prophylactic or therapeutic interventions.


Asunto(s)
Neoplasias , Receptores Fc , Ratones , Animales , Humanos , Inmunoglobulina G , Semivida , Antibacterianos/uso terapéutico , Bacterias Gramnegativas/metabolismo , Bacterias Grampositivas/metabolismo , Ratones Transgénicos , Anticuerpos Monoclonales , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias/terapia , Neoplasias/tratamiento farmacológico
2.
Vaccine ; 41(44): 6529-6537, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37648606

RESUMEN

INTRODUCTION: The incidence of invasive meningococcal disease (IMD) among Norwegian 16-19-year-olds was 1-7/100,000 in the decade before the COVID-19 pandemic, with serogroup Y (MenY) dominance. In contrast to many other European countries, meningococcal vaccines are not part of the national immunisation program (NIP) in Norway. This cross-sectional study aimed to measure the degree of natural immunity against Neisseria meningitidis among adolescents in Norway to evaluate the need for introducing tetravalent meningococcal conjugate vaccine (MCV4) in the NIP. MATERIALS AND METHODS: Serum and saliva samples were collected from students in upper and lower secondary schools in Norway in 2018. Samples were analysed for meningococcal capsular polysaccharide (PS)-specific antibodies using a bead-based multiplex immunoassay. PS-specific antibody levels were linked to data on meningococcal carriage, vaccination status and risk factors for carriage (assessed with questionnaire) and analysed by linear regression of log transformed concentrations. A subset of samples from unvaccinated individuals was analysed for serum bactericidal antibodies (SBA). RESULTS: A total of 1344 participants, median age 16 years (range 12-24), were included in the study. Overall, 60.9% of the participants were female and 1137 (84.6%) were not vaccinated with MCV4. PS-specific antibody concentrations in serum and saliva were low among unvaccinated individuals for all serogroups and only 6.7-20.0% of the subpopulation with high PS-specific antibodies assessed with SBA had protective levels. Unvaccinated MenY carriers had higher levels of MenY anti-PS IgG in serum and IgA in saliva than those not carrying MenY. Use of Swedish snus was associated with lower anti-PS IgG levels in serum and waterpipe use with lower anti-PS IgG levels in saliva. CONCLUSION: Unvaccinated adolescents in Norway have a low degree of natural immunity against the serogroups of N. meningitidis predominating among cases of IMD in this age group. Therefore, introduction of MCV4 for adolescents in the NIP is recommended.

3.
Nat Nanotechnol ; 14(4): 398, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30783200

RESUMEN

In the Supplementary Information file originally published with this Article, the Supplementary references 48-62 were missing; the amended file has now been uploaded.

4.
Nat Nanotechnol ; 14(2): 184-190, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30643273

RESUMEN

Although repetitive patterns of antigens are crucial for certain immune responses, an understanding of how antibodies bind and dynamically interact with various spatial arrangements of molecules is lacking. Hence, we introduced a new method in which molecularly precise nanoscale patterns of antigens are displayed using DNA origami and immobilized in a surface plasmon resonance set-up. Using antibodies with identical antigen-binding domains, we found that all the subclasses and isotypes studied bind bivalently to two antigens separated at distances that range from 3 to 17 nm. The binding affinities of these antibodies change with the antigen distances, with a distinct preference for antigens separated by approximately 16 nm, and considerable differences in spatial tolerance exist between IgM and IgG and between low- and high-affinity antibodies.


Asunto(s)
Anticuerpos/metabolismo , Antígenos/metabolismo , Tolerancia Inmunológica , Nanopartículas/química , Línea Celular , Humanos , Inmunoglobulina G/química , Unión Proteica , Resonancia por Plasmón de Superficie
5.
J Immunol ; 194(11): 5497-508, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25904551

RESUMEN

Engineering of the constant Fc part of monoclonal human IgG1 (hIgG1) Abs is an approach to improve effector functions and clinical efficacy of next-generation IgG1-based therapeutics. A main focus in such development is tailoring of in vivo half-life and transport properties by engineering the pH-dependent interaction between IgG and the neonatal Fc receptor (FcRn), as FcRn is the main homeostatic regulator of hIgG1 half-life. However, whether such engineering affects binding to other Fc-binding molecules, such as the classical FcγRs and complement factor C1q, has not been studied in detail. These effector molecules bind to IgG1 in the lower hinge-CH2 region, structurally distant from the binding site for FcRn at the CH2-CH3 elbow region. However, alterations of the structural composition of the Fc may have long-distance effects. Indeed, in this study we show that Fc engineering of hIgG1 for altered binding to FcRn also influences binding to both the classical FcγRs and complement factor C1q, which ultimately results in alterations of cellular mechanisms such as Ab-dependent cell-mediated cytotoxicity, Ab-dependent cellular phagocytosis, and Ab-dependent complement-mediated cell lysis. Thus, engineering of the FcRn-IgG1 interaction may greatly influence effector functions, which has implications for the therapeutic efficacy and use of Fc-engineered hIgG1 variants.


Asunto(s)
Anticuerpos Monoclonales/genética , Complemento C1q/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Inmunoglobulina G/genética , Receptores Fc/inmunología , Receptores de IgG/inmunología , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos/genética , Afinidad de Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Línea Celular , Células HEK293 , Exones de la Región Bisagra/genética , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Inmunoglobulina G/inmunología , Nitrohidroxiyodofenilacetato/inmunología , Fagocitosis/inmunología , Ingeniería de Proteínas , Receptores Fc/genética , Receptores de IgG/genética , Resonancia por Plasmón de Superficie
6.
Immun Inflamm Dis ; 2(2): 76-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25400928

RESUMEN

The presence of a carbohydrate moiety on asparagine 297 in the Fc part of an IgG molecule is essential for its effector functions and thus influences its vaccine protective effect. Detailed structural carbohydrate analysis of vaccine induced IgGs is therefore of interest as this knowledge can prove valuable in vaccine research and design and when optimizing vaccine schedules. In order to better understand and exploit the protective potential of IgG antibodies, we carried out a pilot study; collecting serum or plasma from volunteers receiving different vaccines and determining the IgG subclass glycosylation patterns against specific vaccine antigens at different time points using LC-ESI-MS analysis. The four vaccines included a pneumococcal capsule polysaccharide vaccine, a meningococcal outer membrane vesicle vaccine, a seasonal influenza vaccine, and a pandemic influenza vaccine. The number of volunteers was limited, but the results following immunization indicated that the IgG subclass which dominated the response showed increased galactose and the level of sialic acid increased with time for most vaccinees. Fucose levels increased for some vaccinees but in general stayed relatively unaltered. The total background IgG glycosylation analyzed in parallel varied little with time and hence the changes seen were likely to be caused by vaccination. The presence of an adjuvant in the pandemic influenza vaccine seemed to produce simpler and less varied glycoforms compared to the adjuvant-free seasonal influenza vaccine. This pilot study demonstrates that detailed IgG glycosylation pattern analysis might be a necessary step in addition to biological testing for optimizing vaccine development and strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA