Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Funct Plant Biol ; 50(12): 1037-1046, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37814368

RESUMEN

For wheat (Triticum aestivum ), sustained crop yield at limited soil water availability has been linked to osmotic adjustment (OA) - a physiological mechanism that aids maintenance of leaf hydration status, turgor (P ) and growth. 'Canada Western Red Spring' (CWRS) wheat cultivars are typically grown in rainfed areas with milder climates, but ongoing climate change is increasesing the frequency and intensity of drought events. The overarching goal of this study was to elucidate if commercially used CWRS cultivars ('Superb', 'Stettler', 'AAC Viewfield') have the ability for leaf OA. Measurements of leaf water relation parameters (water potential, Ψ ; solute potential, Ψ s ; stomatal conductance, g s ; relative water content, RWC) showed that all three cultivars reached zero P (= Ψ - Ψ s ) at a leaf Ψ of -1.1MPa. Prior to that, P maintenance in 'Superb' and 'AAC Viewfield' was associated with a significant reduction in leaf Ψ s and OA contributed 0.53MPa ('Superb') and 0.73MPa ('AAC Viewfield'). Our data analyses provided no support for the existence of OA in 'Stettler'. Under water deficit, leaf g s was significantly higher in 'AAC Viewfield' compared to 'Stettler'; it was intermediate in 'Superb'. Together, drought tolerance in CWRS wheat cultivars is most likely linked to the degree of OA.


Asunto(s)
Triticum , Agua , Sequías , Hojas de la Planta , Resistencia a la Sequía
2.
BMC Biol ; 21(1): 233, 2023 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880702

RESUMEN

BACKGROUND: The population structure of crop pathogens such as Puccinia striiformis f. sp. tritici (Pst), the cause of wheat stripe rust, is of interest to researchers looking to understand these pathogens on a molecular level as well as those with an applied focus such as disease epidemiology. Cereal rusts can reproduce sexually or asexually, and the emergence of novel lineages has the potential to cause serious epidemics such as the one caused by the 'Warrior' lineage in Europe. In a global context, Pst lineages in Canada were not well-characterized and the origin of foreign incursions was not known. Additionally, while some Pst mating type genes have been identified in published genomes, there has been no rigorous assessment of mating type diversity and distribution across the species. RESULTS: We used a whole-genome/transcriptome sequencing approach for the Canadian Pst population to identify lineages in their global context and evidence tracing foreign incursions. More importantly: for the first time ever, we identified nine alleles of the homeodomain mating type locus in the worldwide Pst population and show that previously identified lineages exhibit a single pair of these alleles. Consistently with the literature, we find only two pheromone receptor mating type alleles. We show that the recent population shift from the 'PstS1' lineage to the 'PstS1-related' lineage is also associated with the introduction of a novel mating type allele (Pst-b3-HD) to the Canadian population. We also show evidence for high levels of mating type diversity in samples associated with the Himalayan center of diversity for Pst, including a single Canadian race previously identified as 'PstPr' (probable recombinant) which we identify as a foreign incursion, most closely related to isolates sampled from China circa 2015. CONCLUSIONS: These data describe a recent shift in the population of Canadian Pst field isolates and characterize homeodomain-locus mating type alleles in the global Pst population which can now be utilized in testing several research questions and hypotheses around sexuality and hybridization in rust fungi.


Asunto(s)
Basidiomycota , Alelos , Canadá , Basidiomycota/genética , Recombinación Genética , Europa (Continente) , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
3.
Nat Biotechnol ; 40(3): 422-431, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34725503

RESUMEN

Aegilops tauschii, the diploid wild progenitor of the D subgenome of bread wheat, is a reservoir of genetic diversity for improving bread wheat performance and environmental resilience. Here we sequenced 242 Ae. tauschii accessions and compared them to the wheat D subgenome to characterize genomic diversity. We found that a rare lineage of Ae. tauschii geographically restricted to present-day Georgia contributed to the wheat D subgenome in the independent hybridizations that gave rise to modern bread wheat. Through k-mer-based association mapping, we identified discrete genomic regions with candidate genes for disease and pest resistance and demonstrated their functional transfer into wheat by transgenesis and wide crossing, including the generation of a library of hexaploids incorporating diverse Ae. tauschii genomes. Exploiting the genomic diversity of the Ae. tauschii ancestral diploid genome permits rapid trait discovery and functional genetic validation in a hexaploid background amenable to breeding.


Asunto(s)
Aegilops , Aegilops/genética , Pan , Genómica , Metagenómica , Fitomejoramiento , Triticum/genética
4.
Mol Ecol ; 30(24): 6566-6584, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34543497

RESUMEN

Long-distance migration and host adaptation by transboundary plant pathogens often brings detrimental effects to important agroecosystems. Efficient surveillance as a basis for responding to the dynamics of such pathogens is often hampered by a lack of information on incursion origin, evolutionary pathways and the genetic basis of rapidly evolving virulence across larger timescales. Here, we studied these genetic features by using historical isolates of the obligate biotrophic pathogen Puccinia striiformis f. sp. tritici (Pst), which causes one of the most widespread and devastating diseases, stripe (yellow) rust, of wheat. Through a combination of genotypic, phenotypic and genomic analyses, we assigned eight Pst isolates representing putative exotic Pst incursions into Australia to four previously defined genetic groups, PstS0, PstS1, PstS10 and PstS13. We showed that isolates of an additional incursion of P. striiformis, known locally as P. striiformis f. sp. pseudo-hordei, had a new and unique multilocus SSR genotype (MLG). We provide results of overall genomic variation of representative Pst isolates from each genetic group by comparative genomic analyses. We showed that isolates within the PstS1 and PstS13 genetic groups are most distinct at the whole-genome variant level from isolates belonging to genetic group PstS0, whereas the isolate from the PstS10 genetic group is intermediate. We further explored variable gene content, including putative effectors, representing both shared but also unique genetic changes that have occurred following introduction, some of which may additionally account for local adaptation of these isolates to triticale. Our genotypic and genomic data revealed new genetic insights into the evolution of diverse phenotypes of rust pathogens following incursion into a geographically isolated continental region.


Asunto(s)
Basidiomycota , Enfermedades de las Plantas , Basidiomycota/genética , Genotipo , Puccinia , Virulencia/genética
5.
Phytopathology ; 111(1): 49-67, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33200962

RESUMEN

Anthropocene marks the era when human activity is making a significant impact on earth, its ecological and biogeographical systems. The domestication and intensification of agricultural and forest production systems have had a large impact on plant and tree health. Some pathogens benefitted from these human activities and have evolved and adapted in response to the expansion of crop and forest systems, resulting in global outbreaks. Global pathogen genomics data including population genomics and high-quality reference assemblies are crucial for understanding the evolution and adaptation of pathogens. Crops and forest trees have remarkably different characteristics, such as reproductive time and the level of domestication. They also have different production systems for disease management with more intensive management in crops than forest trees. By comparing and contrasting results from pathogen population genomic studies done on widely different agricultural and forest production systems, we can improve our understanding of pathogen evolution and adaptation to different selection pressures. We find that in spite of these differences, similar processes such as hybridization, host jumps, selection, specialization, and clonal expansion are shaping the pathogen populations in both crops and forest trees. We propose some solutions to reduce these impacts and lower the probability of global pathogen outbreaks so that we can envision better management strategies to sustain global food production as well as ecosystem services.


Asunto(s)
Ecosistema , Enfermedades de las Plantas , Adaptación Fisiológica , Productos Agrícolas , Bosques
6.
Plant Dis ; 104(9): 2369-2376, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32689920

RESUMEN

Fusarium head blight (FHB) and stem rust are among the most devastating diseases of wheat worldwide. Fhb1 is the most widely utilized and the only isolated gene for FHB resistance, while Sr2 is a durable stem rust resistance gene used in rust-prone areas. The two loci are closely linked on the short arm of chromosome 3B and the two genes are in repulsion phase among cultivars. With climate change and the shift in Fusarium populations, it is imperative to develop wheat cultivars resistant to both diseases. The present study was dedicated to developing wheat germplasm combining Fhb1 and Sr2 resistance alleles in the International Maize and Wheat Improvement Center (CIMMYT)'s elite cultivars' backgrounds. Four recombinant inbred lines (RILs) in Hartog background that have the resistant Fhb1 and Sr2 alleles in coupled phase linkage were crossed with seven CIMMYT bread wheat lines, resulting in 208 lines. Molecular markers for both genes were employed in addition to the use of pseudo-black chaff (PBC) as a phenotypic marker for the selection of Sr2. At various stages of the selection process, progeny lines were assessed for FHB index, Fusarium damaged kernels (FDK), stem rust, and PBC expression as well as other diseases of interest (stripe rust and leaf spotting diseases). The 25 best lines were selected for CIMMYT's wheat breeding program. In addition to expressing resistance to FHB, most of these 25 lines have an acceptable level of resistance to other tested diseases. These lines will be useful for wheat breeding programs worldwide and potentially speed up the resistance breeding efforts against FHB and stem rust.


Asunto(s)
Resistencia a la Enfermedad , Triticum/genética , Cromosomas de las Plantas , Marcadores Genéticos , Humanos , Enfermedades de las Plantas
7.
Plant Dis ; 103(12): 2981-2995, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31634033

RESUMEN

Wheat (Triticum spp.) is a major field crop in Canada in terms of acreage, annual production, and export market value. There are nine classes of Canadian wheat based on growth habit (winter or spring), kernel hardness (hard or soft), seed coat color (red or white), and quality factors (grain protein content and gluten strength). Wheat was described by Newman in 1928 as "the economic fairy to the industrial and commercial life of Canada, having built practically the whole economic structure of the Prairie Provinces." Wheat production in Canada is affected by several biotic and abiotic stresses. The major abiotic stresses are frost damage, drought, and heat stress. Among biotic stresses, diseases caused by fungal pathogens are the most important although wheat streak mosaic virus (WSMV) has caused some localized outbreaks in some years. In context of cultivar registration in Canada, there are certain diseases that breeders have to take into account while developing resistant cultivars. The Prairie Recommending Committee for Wheat, Rye, and Triticale (PRCWRT) classify wheat diseases into priority one, priority two, and priority three depending on prevalence and potential damage they can cause. However, priority one diseases are more of a concern and a minimum level of resistance in commercial cultivars is recommended for those.


Asunto(s)
Cruzamiento , Resistencia a la Enfermedad , Hongos , Enfermedades de las Plantas , Triticum , Canadá , Resistencia a la Enfermedad/genética , Hongos/patogenicidad , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Triticum/genética , Triticum/microbiología , Virulencia
8.
Plant Dis ; 103(8): 1850-1857, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31140924

RESUMEN

Fusarium head blight (FHB), caused by Fusarium graminearum, is one of the most damaging diseases that affect wheat in Canada. The disease is best managed by integrating host resistance and fungicides, mainly demethylation inhibitors. Research has shown that the effect of fungicides may be dependent on the level of resistance of the cultivar. However, whether the performance of genotypes carrying specific Sumai 3-derived major FHB quantitative trait loci is dependent on fungicide application has not been explored. In our study, the performance of near-isogenic lines (NILs; <1.0% genome/alleles from the resistance donor), carrying Fhb1 and Fhb5 in a hard red spring wheat cultivar CDC Go background compared with a moderately susceptible (MS) genotype, was evaluated with and without one application of metconazole during full flowering. Field experiments were conducted at five site-years in Saskatchewan, Canada, between 2016 and 2017. In both the individual and combined analysis (all trials), we found that the effect of NILs and metconazole in suppressing FHB symptoms and deoxynivalenol (DON) accumulation in the grain was additive. FHB severity was generally low and fungicide efficacy levels, relative to the untreated control, were increased in the MS cultivar than in the NILs carrying Fhb1 and Fhb5, which were least affected by the disease. The results confirm the importance of integrating fungicides with cultivar resistance to reduce FHB and DON, regardless of the presence of those well-characterized resistant genes.


Asunto(s)
Fungicidas Industriales , Fusarium , Sitios de Carácter Cuantitativo , Triticum , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Fusarium/fisiología , Saskatchewan , Triticum/genética
9.
Plant Cell Environ ; 42(2): 509-526, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30160775

RESUMEN

Fusarium head blight, caused primarily by Fusarium graminearum (Fg), is one of the most devastating diseases of wheat. Host resistance in wheat is classified into five types (Type-I to Type-V), and a majority of moderately resistant genotypes carry Type-II resistance (resistance to pathogen spread in the rachis) alleles, mainly from the Chinese cultivar Sumai 3. Histopathological studies in the past failed to identify the key tissue in the spike conferring resistance to pathogen spread, and most of the studies used destructive techniques, potentially damaging the tissue(s) under study. In the present study, nondestructive synchrotron-based phase contrast X-ray imaging and computed tomography techniques were used to confirm the part of the wheat spike conferring Type-II resistance to Fg spread, thus showcasing the application of synchrotron-based techniques to image host-pathogen interactions. Seven wheat genotypes of moderate resistance to Fusarium head blight were studied for changes in the void space volume fraction and grayscale/voxel intensity following Fg inoculation. Cell-wall biopolymeric compounds were quantified using Fourier-transform midinfrared spectroscopy for all genotype-treatment combinations. The study revealed that the rachilla and rachis nodes together are structurally important in conferring Type-II resistance. The structural reinforcement was not necessarily observed from lignin deposition but rather from an unknown mechanism.


Asunto(s)
Resistencia a la Enfermedad , Fusarium , Interacciones Huésped-Patógeno , Enfermedades de las Plantas/microbiología , Tallos de la Planta/anatomía & histología , Triticum/inmunología , Enfermedades de las Plantas/inmunología , Tallos de la Planta/microbiología , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Tomografía Computarizada por Rayos X , Triticum/anatomía & histología , Triticum/microbiología
10.
Front Plant Sci ; 9: 1497, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30386358

RESUMEN

Karnal bunt (KB) of wheat, caused by Tilletia indica, is one of the greatest challenges to grain industry, not because of yield loss, but quarantine regulations that restrict international movement and trade of affected stocks. Genetic resistance is the best way to manage this disease. Although several different sources of resistance have been identified to date, very few of those have been subjected to genetic analyses. Understanding the genetics of resistance, characterization and mapping of new resistance loci can help in development of improved germplasm. The objective of this study was to identify and characterize resistance loci (QTL) in two independent recombinant inbred lines (RILs) populations utilizing different wheat lines as resistance donors. Elite CIMMYT wheat lines Blouk#1 and Huirivis#1 were used as susceptible female parents and WHEAR/KUKUNA/3/C80.1/3∗BATAVIA//2∗WBLL1 (WKCBW) and Mutus as moderately resistant male parents in Pop1 and Pop2 populations, respectively. Populations were evaluated for KB resistance in 2015-16 and 2016-17 cropping seasons at two seeding dates (total four environments) in Cd. Obregon, Mexico. Two stable QTL from each population were identified in each environment: QKb.cim-2B and QKb.cim-3D (Pop1), QKb.cim-3B1 and QKb.cim-5B2 (Pop2). Other than those four QTL, other QTL were detected in each population which were specific to environments: QKb.cim-5B1, QKb.cim-6A, and QKb.cim-7A (Pop1), QKb.cim-3B2, QKb.cim-4A1, QKb.cim-4A2, QKb.cim-4B, QKb.cim-5A1, QKb.cim-5A2, and QKb.cim-7A2 (Pop2). Among the four stable QTL, all but QKb.cim-3B1 were derived from the resistant parent. QKb.cim-2B and QKb.cim-3D in Pop1 and QKb.cim-3B1 and QKb.cim-5B2 in Pop2 explained 5.0-11.4% and 3.3-7.1% phenotypic variance, respectively. A combination of two stable QTL in each population reduced KB infection by 24-33%, respectively. Transgressive resistant segregants lines derived with resistance alleles from both parents in each population were identified. Single nucleotide polymorphism (SNP) markers flanking these QTL regions may be amenable to marker-assisted selection. The best lines from both populations (in agronomy, end-use quality and KB resistance) carrying resistance alleles at all identified loci, may be used for inter-crossing and selection of improved germplasm in future. Markers flanking these QTL may assist in selection of such lines.

11.
Environ Microbiol ; 20(4): 1498-1515, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29411480

RESUMEN

Wheat stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an important disease in Canada. The worldwide genetic structure of Pst populations have been characterized, excluding Canada. Here, we elucidated the genetic structure of the western Canadian Pst population using molecular markers, revealing the presence of four divergent lineages with predominantly clonal structure. In the worldwide context, two previously reported lineages were identified: PstS0 (22%), representing an old Northwestern-European and PstS1 (35%), an invasive warm-temperature adapted. Additionally, two new, unreported lineages, PstPr (9%) and PstS1-related (35%), were detected, which produced more telia than other lineages and had double the number of unique recombination events. The PstPr was a recent invasion, and likely evolved in a diverse, recombinant population as it was closely related to the PstS5, PstS7/Warrior, PstS8/Kranich, and PstS9 lineages originating from sexually recombining populations in the centre of diversity. The DNA methylation analysis revealed DNA-methyltransferase1-homologs, providing compelling evidence for epigenetic regulation and as a first report, an average of ∼5%, 5hmC in the Puccinia epigenome merits further investigation. The divergent lineages in the Canadian Pst population with the potential for genetic recombination, as well as epigenetic regulation needs consideration in the context of pathogen adaptation and management.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/genética , Metilación de ADN/genética , Enfermedades de las Plantas/microbiología , Triticum/microbiología , Canadá , Mapeo Cromosómico , Epigénesis Genética , Marcadores Genéticos/genética , Repeticiones de Microsatélite/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA