RESUMEN
Spinocerebellar ataxia type 1 (SCA1) is an autosomal dominant disorder caused by a CAG repeat expansion, characterized by progressive cerebellar ataxia and pyramidal signs. Non-motor and extracerebellar symptoms may occur. MRI-based studies in SCA1 focused in the cerebellum and connections, but there are no data about cord damage in the disease and its clinical relevance. To evaluate in vivo spinal cord damage in SCA1, a group of 31 patients with SCA1 and 31 age- and gender-matched healthy controls underwent MRI on a 3T scanner. We used T1-weighted 3D images to estimate the cervical spinal cord area (CA) and eccentricity (CE) at three C2/C3 levels based on a semi-automatic image segmentation protocol. The scale for assessment and rating of ataxia (SARA) was used to quantify disease severity. The groups were significantly different regarding CA (47.26 ± 7.4 vs. 68.8 ± 5.7 mm2, p < 0.001) and CE values (0.803 ± 0.044 vs. 0.774 ± 0.043, p < 0.05). Furthermore, in the patient group, CA presented significant correlation with SARA scores (R = -0.633, p < 0.001) and CAGn expansion (R = -0.658, p < 0.001). CE was not associated with SARA scores (p = 0.431). In the multiple variable regression, CA was strongly associated with disease duration (coefficient -0.360, p < 0.05) and CAGn expansion (coefficient -1.124, p < 0.001). SCA1 is characterized by cervical cord atrophy and anteroposterior flattening. Morphometric analyses of the spinal cord MRI might be a useful biomarker in the disease.
Asunto(s)
Médula Cervical/diagnóstico por imagen , Ataxias Espinocerebelosas/diagnóstico por imagen , Adulto , Estudios Transversales , Progresión de la Enfermedad , Femenino , Humanos , Imagenología Tridimensional , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Tamaño de los Órganos , Reconocimiento de Normas Patrones Automatizadas , Análisis de RegresiónRESUMEN
INTRODUCTION: We investigated whether MR diffusion tensor imaging (DTI) analysis of the cervical spinal cord could aid the (differential) diagnosis of sensory neuronopathies, an underdiagnosed group of diseases of the peripheral nervous system. METHODS: We obtained spinal cord DTI and T2WI at 3 T from 28 patients, 14 diabetic subjects with sensory-motor distal polyneuropathy, and 20 healthy controls. We quantified DTI-based parameters and looked at the hyperintense T2W signal at the spinal cord posterior columns. Fractional anisotropy and mean diffusivity values at C2-C3 and C3-C4 levels were compared between groups. We also compared average fractional anisotropy (mean of values at C2-C3 and C3-C4 levels). A receiver operating characteristic (ROC) curve was used to determine diagnostic accuracy of average fractional anisotropy, and we compared its sensitivity against the hyperintense signal in segregating patients from the other subjects. RESULTS: Mean age and disease duration were 52 ± 10 and 11.4 ± 9.3 years in the patient group. Eighteen subjects had idiopathic disease and 6 dysimmune etiology. Fractional anisotropy at C3-C4 level and average fractional anisotropy were significantly different between patients and healthy controls (p < 0.001 and <0.001) and between patients and diabetic subjects (p = 0.019 and 0.027). Average fractional anisotropy presented an area under the curve of 0.838. Moreover, it had higher sensitivity than visual detection of the hyperintense signal (0.86 vs. 0.54), particularly for patients with short disease duration. CONCLUSION: DTI-based analysis enables in vivo detection of posterior column damage in sensory neuronopathy patients and is a useful diagnostic test for this condition. It also helps the differential diagnosis between sensory neuronopathy and distal polyneuropathies.