RESUMEN
Melanoma is the most aggressive and fatal type of skin cancer due to being highly proliferative. Acetylsalicylic acid (ASA; Aspirin) and salicylic acid (SA) are ancient drugs with multiple applications in medicine. Here, we showed that ASA and SA present anticancer effects against a murine model of implanted melanoma. These effects were also validated in 3D- and 2D-cultured melanoma B16F10 cells, where the drugs promoted pro-apoptotic effects. In both in vivo and in vitro models, SA and ASA triggered endoplasmic reticulum (ER) stress, which culminates with the upregulation of the pro-apoptotic transcription factor C/EBP homologous protein (CHOP). These effects are initiated by ASA/SA-triggered Akt/mTOR/AMPK-dependent activation of nitric oxide synthase 3 (eNOS), which increases nitric oxide and reactive oxygen species production inducing ER stress response. In the end, we propose that ASA and SA instigate anticancer effects by a novel mechanism, the activation of ER stress.
Asunto(s)
Apoptosis/efectos de los fármacos , Aspirina/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Melanoma/etiología , Melanoma/patología , Óxido Nítrico/metabolismo , Ácido Salicílico/farmacología , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Antineoplásicos , Aspirina/uso terapéutico , Línea Celular Tumoral , Modelos Animales de Enfermedad , Masculino , Melanoma/tratamiento farmacológico , Ratones Endogámicos C57BL , Terapia Molecular Dirigida , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ácido Salicílico/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
BACKGROUND: Although produced by several types of tumours, the role of serotonin on cancer biology is yet to be understood. METHODS: The effects of serotonin (5-HT) on human breast cancer cells proliferation, signalling pathways and metabolic profile were evaluated by cytometry, western blotting, qPCR, enzymology and confocal microscopy. RESULTS: Our results revealed that incubation of MCF-7 cells with 10 µM 5-HT increased cell growth rate by 28%, an effect that was prevented by the 5-HTR2A/C antagonist, ketanserin. Conversely, increasing concentrations of 5-HT promoted glucose consumption and lactate production by MCF-7 cells. We also showed that increased glucose metabolism is provoked by the upregulation of pyruvate kinase M2 (PKM2) isoform through 5-HTR2A/C-triggered activation of Jak1/STAT3 and ERK1/2 subcellular pathways. However, we noticed a decrease in the rate of produced lactate per consumed glucose as a function of the hormone concentration, suggesting a disruption of the Warburg effect. The latter effect is due to 5-HTR2A/C-dependent mitochondrial biogenesis and metabolism, which is triggered by adenylyl cyclase/PKA, enhancing the oxidation of lactate within these cells. CONCLUSIONS: We showed that serotonin, through 5-HTR2A/C, interferes with breast cancer cells proliferation and metabolism by triggering two distinct signalling pathways: Jak1/STAT3 that boosts glycolysis through upregulation of PKM2, and adenylyl cyclase/PKA that enhances mitochondrial biogenesis.
Asunto(s)
Neoplasias de la Mama/genética , Proliferación Celular/efectos de los fármacos , Janus Quinasa 1/genética , Factor de Transcripción STAT3/genética , Adenilil Ciclasas/genética , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas Portadoras/genética , Supervivencia Celular/efectos de los fármacos , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Ketanserina/farmacología , Sistema de Señalización de MAP Quinasas/genética , Células MCF-7 , Proteínas de la Membrana/genética , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Serotonina/farmacología , Hormonas Tiroideas/genética , Proteínas de Unión a Hormona TiroideRESUMEN
BACKGROUND: Breast cancer is a major cause of death among women worldwide. Treatment for breast cancer involves the surgical removal of cancer tissue, followed by chemotherapy. Although the treatment is efficient, especially when the cancer is detected early, recurrence is common and is often resistant to the previous treatment. Therefore, a constant search for efficient and novel drugs for the treatment of breast cancer is mandatory. Recently, triazole derivatives have shown promising effects against different types of cancer, revealing these molecules as putative anticancer drugs. EXPERIMENTAL: We have synthesized a series of naphthotriazolyl-4-oxoquinoline derivatives and tested their activity against a human breast cancer cell line. Among the compounds tested, we identified a molecule that killed the human breast cancer cell line MCF-7 with minimal effects on its noncancer counterpart, MCF10A. This effect was seen after 24 hours of treatment and persisted for additional 24 hours after treatment withdrawal. After 1 hour of treatment, the compound, here named 12c, promoted a decrease in cell glucose consumption and lactate production. Moreover, the cells treated with 12c for 1 hour showed diminished intracellular ATP levels with unaltered mitochondrial potential and increased reactive oxygen species production. Additionally, apoptosis was triggered after treatment with the drug for 1 hour. All of these effects are only observed with MCF-7 cells, and not MCF10A. These data show that 12c has selective activity against breast cancer cells and is a potential candidate for a novel anticancer drug. RESULTS AND CONCLUSION: The naphthotriazolyl-4-oxoquinoline derivatives were obtained in good to moderate yields, and one of them, 12c, exhibited strong and selective antitumor properties. The antitumor mechanism involves inhibition of glycolysis, diminished intracellular ATP levels, induction of ROS production and triggering of apoptosis. These effects are all selective for cancer cells, since noncancer cells are unaffected, and these effects can only be attributed to the whole molecule, as different pharmacophoric groups did not reproduce these effects.