Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neuroimage ; 200: 1-11, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31212098

RESUMEN

Humans are highly skilled at analysing complex acoustic scenes. The segregation of different acoustic streams and the formation of corresponding neural representations is mostly attributed to the auditory cortex. Decoding of selective attention from neuroimaging has therefore focussed on cortical responses to sound. However, the auditory brainstem response to speech is modulated by selective attention as well, as recently shown through measuring the brainstem's response to running speech. Although the response of the auditory brainstem has a smaller magnitude than that of the auditory cortex, it occurs at much higher frequencies and therefore has a higher information rate. Here we develop statistical models for extracting the brainstem response from multi-channel scalp recordings and for analysing the attentional modulation according to the focus of attention. We demonstrate that the attentional modulation of the brainstem response to speech can be employed to decode the attentional focus of a listener from short measurements of 10 s or less in duration. The decoding remains accurate when obtained from three EEG channels only. We further show how out-of-the-box decoding that employs subject-independent models, as well as decoding that is independent of the specific attended speaker is capable of achieving similar accuracy. These results open up new avenues for investigating the neural mechanisms for selective attention in the brainstem and for developing efficient auditory brain-computer interfaces.


Asunto(s)
Atención/fisiología , Corteza Cerebral/fisiología , Electroencefalografía/métodos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Percepción del Habla/fisiología , Adulto , Femenino , Humanos , Masculino , Adulto Joven
2.
Curr Biol ; 28(23): 3833-3839.e3, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30471997

RESUMEN

Recent studies identify severely brain-injured patients with limited or no behavioral responses who successfully perform functional magnetic resonance imaging (fMRI) or electroencephalogram (EEG) mental imagery tasks [1-5]. Such tasks are cognitively demanding [1]; accordingly, recent studies support that fMRI command following in brain-injured patients associates with preserved cerebral metabolism and preserved sleep-wake EEG [5, 6]. We investigated the use of an EEG response that tracks the natural speech envelope (NSE) of spoken language [7-22] in healthy controls and brain-injured patients (vegetative state to emergence from minimally conscious state). As audition is typically preserved after brain injury, auditory paradigms may be preferred in searching for covert cognitive function [23-25]. NSE measures are obtained by cross-correlating EEG with the NSE. We compared NSE latencies and amplitudes with and without consideration of fMRI assessments. NSE latencies showed significant and progressive delay across diagnostic categories. Patients who could carry out fMRI-based mental imagery tasks showed no statistically significant difference in NSE latencies relative to healthy controls; this subgroup included patients without behavioral command following. The NSE may stratify patients with severe brain injuries and identify those patients demonstrating "cognitive motor dissociation" (CMD) [26] who show only covert evidence of command following utilizing neuroimaging or electrophysiological methods that demand high levels of cognitive function. Thus, the NSE is a passive measure that may provide a useful screening tool to improve detection of covert cognition with fMRI or other methods and improve stratification of patients with disorders of consciousness in research studies.


Asunto(s)
Lesiones Encefálicas/fisiopatología , Cognición/fisiología , Habla/fisiología , Adolescente , Adulto , Lesiones Encefálicas/clasificación , Lesiones Encefálicas/diagnóstico , Electroencefalografía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neuroimagen , Adulto Joven
3.
Front Comput Neurosci ; 10: 47, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303286

RESUMEN

The auditory-brainstem response (ABR) to short and simple acoustical signals is an important clinical tool used to diagnose the integrity of the brainstem. The ABR is also employed to investigate the auditory brainstem in a multitude of tasks related to hearing, such as processing speech or selectively focusing on one speaker in a noisy environment. Such research measures the response of the brainstem to short speech signals such as vowels or words. Because the voltage signal of the ABR has a tiny amplitude, several hundred to a thousand repetitions of the acoustic signal are needed to obtain a reliable response. The large number of repetitions poses a challenge to assessing cognitive functions due to neural adaptation. Here we show that continuous, non-repetitive speech, lasting several minutes, may be employed to measure the ABR. Because the speech is not repeated during the experiment, the precise temporal form of the ABR cannot be determined. We show, however, that important structural features of the ABR can nevertheless be inferred. In particular, the brainstem responds at the fundamental frequency of the speech signal, and this response is modulated by the envelope of the voiced parts of speech. We accordingly introduce a novel measure that assesses the ABR as modulated by the speech envelope, at the fundamental frequency of speech and at the characteristic latency of the response. This measure has a high signal-to-noise ratio and can hence be employed effectively to measure the ABR to continuous speech. We use this novel measure to show that the ABR is weaker to intelligible speech than to unintelligible, time-reversed speech. The methods presented here can be employed for further research on speech processing in the auditory brainstem and can lead to the development of future clinical diagnosis of brainstem function.

4.
Front Hum Neurosci ; 9: 436, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26300760

RESUMEN

The brain's analyses of speech and music share a range of neural resources and mechanisms. Music displays a temporal structure of complexity similar to that of speech, unfolds over comparable timescales, and elicits cognitive demands in tasks involving comprehension and attention. During speech processing, synchronized neural activity of the cerebral cortex in the delta and theta frequency bands tracks the envelope of a speech signal, and this neural activity is modulated by high-level cortical functions such as speech comprehension and attention. It remains unclear, however, whether the cortex also responds to the natural rhythmic structure of music and how the response, if present, is influenced by higher cognitive processes. Here we employ electroencephalography to show that the cortex responds to the beat of music and that this steady-state response reflects musical comprehension and attention. We show that the cortical response to the beat is weaker when subjects listen to a familiar tune than when they listen to an unfamiliar, non-sensical musical piece. Furthermore, we show that in a task of intermodal attention there is a larger neural response at the beat frequency when subjects attend to a musical stimulus than when they ignore the auditory signal and instead focus on a visual one. Our findings may be applied in clinical assessments of auditory processing and music cognition as well as in the construction of auditory brain-machine interfaces.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA