Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
IEEE Trans Image Process ; 4(4): 416-29, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-18289991

RESUMEN

A recursive model-based algorithm for obtaining the maximum a posteriori (MAP) estimate of the displacement vector field (DVF) from successive image frames of an image sequence is presented. To model the DVF, we develop a nonstationary vector field model called the vector coupled Gauss-Markov (VCGM) model. The VCGM model consists of two levels: an upper level, which is made up of several submodels with various characteristics, and a lower level or line process, which governs the transitions between the submodels. A detailed line process is proposed. The VCGM model is well suited for estimating the DVF since the resulting estimates preserve the boundaries between the differently moving areas in an image sequence. A Kalman type estimator results, followed by a decision criterion for choosing the appropriate line process. Several experiments demonstrate the superior performance of the proposed algorithm with respect to prediction error, interpolation error, and robustness to noise.

2.
IEEE Trans Image Process ; 4(9): 1236-51, 1995.
Artículo en Inglés | MEDLINE | ID: mdl-18292020

RESUMEN

We develop a recursive model-based maximum a posteriori (MAP) estimator that simultaneously estimates the displacement vector field (DVF) and the intensity field from a noisy-blurred image sequence. Current motion-compensated spatio-temporal noise filters treat the estimation of the DVF as a preprocessing step. Generally, no attempt is made to verify the accuracy of these estimates prior to their use in the filter. By simultaneously estimating these two fields, we establish a link between the two estimators. It is through this link that the DVF estimate and its corresponding accuracy information are shared with the other intensity estimator, and vice versa. To model the DVF and the intensity field, we use coupled Gauss-Markov (CGM) models. A CGM model consists of two levels: an upper level, which is made up of several submodels with various characteristics, and a lower level or line field, which governs the transitions between the submodels. The CGM models are well suited for estimating the displacement and intensity fields since the resulting estimates preserve the boundaries between the stationary areas present in both fields. Detailed line fields are proposed for the modeling of these boundaries, which also take into account the correlations that exist between these two fields. A Kalman-type estimator results, followed by a decision criterion for choosing the appropriate set of line fields. Several experiments using noisy and noisy-blurred image sequences demonstrate the superior performance of the proposed algorithm with respect to prediction error and mean-square error.

3.
IEEE Trans Image Process ; 3(5): 652-65, 1994.
Artículo en Inglés | MEDLINE | ID: mdl-18291958

RESUMEN

In this paper, we present a novel coding technique that makes use of the nonstationary characteristics of an image sequence displacement field to estimate and encode motion information. We utilize an MPEG style codec in which the anchor frames in a sequence are encoded with a hybrid approach using quadtree, DCT, and wavelet-based coding techniques. A quadtree structured approach is also utilized for the interframe information. The main objective of the overall design is to demonstrate the coding potential of a newly developed motion estimator called the coupled linearized MAP (CLMAP) estimator. This estimator can be used as a means for producing motion vectors that may be regenerated at the decoder with a coarsely quantized error term created in the encoder. The motion estimator generates highly accurate motion estimates from this coarsely quantized data. This permits the elimination of a separately coded displaced frame difference (DFD) and coded motion vectors. For low bit rate applications, this is especially important because the overhead associated with the transmission of motion vectors may become prohibitive. We exploit both the advantages of the nonstationary motion estimator and the effective compression of the anchor frame coder to improve the visual quality of reconstructed QCIF format color image sequences at low bit rates. Comparisons are made with other video coding methods, including the H.261 and MPEG standards and a pel-recursive-based codec.

4.
Med Phys ; 19(5): 1175-82, 1992.
Artículo en Inglés | MEDLINE | ID: mdl-1435595

RESUMEN

The expectation maximization (EM) algorithm has received considerable attention in the area of positron emitted tomography (PET) as a restoration and reconstruction technique. In this paper, the restoration capabilities of the EM algorithm when applied to radiographic images is investigated. This application does not involve reconstruction. The performance of the EM algorithm is quantitatively evaluated using a "perceived" signal-to-noise ratio (SNR) as the image quality metric. This perceived SNR is based on statistical decision theory and includes both the observer's visual response function and a noise component internal to the eye-brain system. For a variety of processing parameters, the relative SNR (ratio of the processed SNR to the original SNR) is calculated and used as a metric to compare quantitatively the effects of the EM algorithm with two other image enhancement techniques: global contrast enhancement (windowing) and unsharp mask filtering. The results suggest that the EM algorithm's performance is superior when compared to unsharp mask filtering and global contrast enhancement for radiographic images which contain objects smaller than 4 mm.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Mamografía/métodos , Tomografía Computarizada de Emisión , Algoritmos , Calcinosis/diagnóstico por imagen , Femenino , Humanos , Matemática , Modelos Teóricos , Variaciones Dependientes del Observador , Tomografía Computarizada de Emisión/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA