Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
G3 (Bethesda) ; 12(9)2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35920792

RESUMEN

Genetic groups have been widely adopted in tree breeding to account for provenance effects within pedigree-derived relationship matrices. However, provenances or genetic groups have not yet been incorporated into single-step genomic BLUP ("HBLUP") analyses of tree populations. To quantify the impact of accounting for population structure in Eucalyptus globulus, we used HBLUP to compare breeding value predictions from models excluding base population effects and models including either fixed genetic groups or the marker-derived proxies, also known as metafounders. Full-sib families from 2 separate breeding populations were evaluated across 13 sites in the "Green Triangle" region of Australia. Gamma matrices (Γ) describing similarities among metafounders reflected the geographic distribution of populations and the origins of 2 land races were identified. Diagonal elements of Γ provided population diversity or allelic covariation estimates between 0.24 and 0.56. Genetic group solutions were strongly correlated with metafounder solutions across models and metafounder effects influenced the genetic solutions of base population parents. The accuracy, stability, dispersion, and bias of model solutions were compared using the linear regression method. Addition of genomic information increased accuracy from 0.41 to 0.47 and stability from 0.68 to 0.71, while increasing bias slightly. Dispersion was within 0.10 of the ideal value (1.0) for all models. Although inclusion of metafounders did not strongly affect accuracy or stability and had mixed effects on bias, we nevertheless recommend the incorporation of metafounders in prediction models to represent the hierarchical genetic population structure of recently domesticated populations.


Asunto(s)
Eucalyptus , Eucalyptus/genética , Genoma , Genómica/métodos , Genotipo , Humanos , Modelos Genéticos , Fenotipo , Fitomejoramiento
2.
G3 (Bethesda) ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34568915

RESUMEN

Single-step GBLUP (HBLUP) efficiently combines genomic, pedigree, and phenotypic information for holistic genetic analyses of disjunct breeding populations. We combined data from two independent multigenerational Eucalyptus globulus breeding populations to provide direct comparisons across the programs and indirect predictions in environments where pedigreed families had not been evaluated. Despite few known pedigree connections between the programs, genomic relationships provided the connectivity required to create a unified relationship matrix, H, which was used to compare pedigree-based and HBLUP models. Stem volume data from 48 sites spread across three regions of southern Australia and wood quality data across 20 sites provided comparisons of model accuracy. Genotyping proved valuable for correcting pedigree errors and HBLUP more precisely defines relationships within and among populations, with relationships among the genotyped individuals used to connect the pedigrees of the two programs. Cryptic relationships among the native range populations provided evidence of population structure and evidence of the origin of landrace populations. HBLUP across programs improved the prediction accuracy of parents and genotyped individuals and enabled breeding value predictions to be directly compared and inferred in regions where little to no testing has been undertaken. The impact of incorporating genetic groups in the estimation of H will further align traditional genetic evaluation pipelines with approaches that incorporate marker-derived relationships into prediction models.


Asunto(s)
Eucalyptus , Eucalyptus/genética , Genoma , Genómica , Genotipo , Humanos , Modelos Genéticos , Fenotipo , Fitomejoramiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA