Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micron ; 117: 29-39, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30458300

RESUMEN

Fault zone permeability and the real 3D-spatial distribution of the fault-related fracture networks are critical in the assessment of fault zones behavior for fluids. The study of the real 3D-spatial distribution of the microfracture network, using X-ray micro-computed tomography, is a crucial factor to unravel the real structural permeability conditions of a fault-zone. Despite the availability of several commercial software for rock properties estimation from X-ray micro-computed tomography scanning, their high cost and lack of programmability encourage the use of open-source data treatment. This work presents the implementation of a methodology flow for the quantification of both structural and geometrical parameters (fractures density, fractures aperture, fractures porosity, and fractures surface area), and the modeling of palaeopermeability of fault-related fractured samples, with focus in the proper spatial orientation of both the sample and the results. This is performed with an easy to follow step-by-step implementation, by a combination of open-source software, newly implemented codes, and numerical methods. This approach keeps track of the sample's spatial orientation from the physical to the virtual world, thus assessing any fault-related palaeopermeability anisotropy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA