Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 13(16)2021 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-34439185

RESUMEN

Histone Deacetylase (HDAC) enzymes are upregulated in cancer leading to the development of HDAC inhibiting compounds, several of which are currently in clinical trials. Side effects associated with toxicity and non-specific targeting indicate the need for efficient drug delivery approaches and tumor specific targeting to enhance HDAC efficacy in solid tumor cancers. SAHA encapsulation within F127 micelles functionalized with a surface hyaluronic acid moiety, was developed to target endometrial cancer cells expressing elevated levels of CD44. In vitro viability and morphology analyses was conducted in both 2D and 3D models to assess the translational potential of this approach. Encapsulation enhanced SAHA delivery and activity, demonstrating increased cytotoxic efficacy in 2D and 3D endometrial cancer models. High-content imaging showed improved nanoparticle internalization in 2D and CD44 enhanced penetration in 3D models. In addition, the nano-delivery system enhanced spheroid penetration resulting in cell growth suppression, p21 associated cell cycle arrest, as well as overcoming the formation of an EMT associated phenotype observed in free drug treated type II endometrial cancer cells. This study demonstrates that targeted nanoparticle delivery of SAHA could provide the basis for improving its efficacy in endometrial cancer. Using 3D models for endometrial cancer allows the elucidation of nanoparticle performance and CD44 targeting, likely through penetration and retention within the tumor model.

2.
Arch Toxicol ; 92(2): 935-951, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29110037

RESUMEN

Human exposure to carcinogens occurs via a plethora of environmental sources, with 70-90% of cancers caused by extrinsic factors. Aberrant phenotypes induced by such carcinogenic agents may provide universal biomarkers for cancer causation. Both current in vitro genotoxicity tests and the animal-testing paradigm in human cancer risk assessment fail to accurately represent and predict whether a chemical causes human carcinogenesis. The study aimed to establish whether the integrated analysis of multiple cellular endpoints related to the Hallmarks of Cancer could advance in vitro carcinogenicity assessment. Human lymphoblastoid cells (TK6, MCL-5) were treated for either 4 or 23 h with 8 known in vivo carcinogens, with doses up to 50% Relative Population Doubling (maximum 66.6 mM). The adverse effects of carcinogens on wide-ranging aspects of cellular health were quantified using several approaches; these included chromosome damage, cell signalling, cell morphology, cell-cycle dynamics and bioenergetic perturbations. Cell morphology and gene expression alterations proved particularly sensitive for environmental carcinogen identification. Composite scores for the carcinogens' adverse effects revealed that this approach could identify both DNA-reactive and non-DNA reactive carcinogens in vitro. The richer datasets generated proved that the holistic evaluation of integrated phenotypic alterations is valuable for effective in vitro risk assessment, while also supporting animal test replacement. Crucially, the study offers valuable insights into the mechanisms of human carcinogenesis resulting from exposure to chemicals that humans are likely to encounter in their environment. Such an understanding of cancer induction via environmental agents is essential for cancer prevention.


Asunto(s)
Pruebas de Carcinogenicidad/métodos , Carcinógenos/toxicidad , Linfocitos/efectos de los fármacos , Mutágenos/toxicidad , Línea Celular , Humanos , Pruebas de Micronúcleos , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , Proteína p53 Supresora de Tumor/metabolismo
3.
Mutagenesis ; 31(2): 171-80, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26362870

RESUMEN

4-Nitroquinoline 1-oxide (4NQO) is used as a positive control in various genotoxicity assays because of its known mutagenic and carcinogenic properties. The chemical is converted into 4-hydroxyaminoquinoline 1-oxide and gives rise to three main DNA adducts, N-(deoxyguanosin-8-yl)-4AQO, 3-(desoxyguanosin-N (2)-yl)-4AQO and 3-(deoxyadenosin-N (6)-yl)-4AQO. This study was designed to assess the shape of the dose-response curve at low concentrations of 4NQO in three human lymphoblastoid cell lines, MCL-5, AHH-1 and TK6 as well as the mouse lymphoma L5178Y cell line in vitro. Chromosomal damage was investigated using the in vitro micronucleus assay, while further gene mutation and DNA damage studies were carried out using the hypoxanthine-guanine phosphoribosyltransferase forward mutation and comet assays. 4NQO showed little to no significant increases in micronucleus induction in the human lymphoblastoid cell lines, even up to 55±5% toxicity. A dose-response relationship could only be observed in the mouse lymphoma cell line L5178Y after 4NQO treatment, even at concentrations with no reduction in cell viability. Further significant increases in gene mutation and DNA damage induction were observed. Hence, 4NQO is a more effective point mutagen than clastogen, and its suitability as a positive control for genotoxicity testing has to be evaluated for every individual assay.


Asunto(s)
4-Nitroquinolina-1-Óxido/toxicidad , Carcinógenos/toxicidad , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/genética , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas/inducido químicamente , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Hipoxantina Fosforribosiltransferasa/genética , Ratones , Pruebas de Micronúcleos , Pruebas de Mutagenicidad , Mutación/efectos de los fármacos
4.
Mutagenesis ; 29(3): 155-64, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24705543

RESUMEN

Micronucleus (MN) induction is an established cytogenetic end point for evaluating structural and numerical chromosomal alterations in genotoxicity testing. A semi-automated scoring protocol for the assessment of MN preparations from human cell lines and a 3D skin cell model has been developed and validated. Following exposure to a range of test agents, slides were stained with 4'-6-diamidino-2-phenylindole (DAPI) and scanned by use of the MicroNuc module of metafer 4, after the development of a modified classifier for selecting MN in binucleate cells. A common difficulty observed with automated systems is an artefactual output of high false positives, in the case of the metafer system this is mainly due to the loss of cytoplasmic boundaries during slide preparation. Slide quality is paramount to obtain accurate results. We show here that to avoid elevated artefactual-positive MN outputs, diffuse cell density and low-intensity nuclear staining are critical. Comparisons between visual (Giemsa stained) and automated (DAPI stained) MN frequencies and dose-response curves were highly correlated (R (2) = 0.70 for hydrogen peroxide, R (2) = 0.98 for menadione, R (2) = 0.99 for mitomycin C, R (2) = 0.89 for potassium bromate and R (2) = 0.68 for quantum dots), indicating the system is adequate to produce biologically relevant and reliable results. Metafer offers many advantages over conventional scoring including increased output and statistical power, and reduced scoring subjectivity, labour and costs. Further, the metafer system is easily adaptable for use with a range of different cells, both suspension and adherent human cell lines. Awareness of the points raised here reduces the automatic positive errors flagged and drastically reduces slide scoring time, making metafer an ideal candidate for genotoxic biomonitoring and population studies and regulatory genotoxic testing.


Asunto(s)
Pruebas de Micronúcleos/métodos , Técnicas de Cultivo de Célula , Línea Celular , Rotura Cromosómica/efectos de los fármacos , Colorantes Fluorescentes , Humanos , Indoles , Queratinocitos/efectos de los fármacos , Queratinocitos/patología , Micronúcleos con Defecto Cromosómico/efectos de los fármacos , Pruebas de Micronúcleos/estadística & datos numéricos , Mutágenos/toxicidad
5.
Toxicol Sci ; 140(1): 94-102, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24675086

RESUMEN

The p53 tumor suppressor protein plays an essential role in cellular integrity and inactivation of the TP53 gene by mutation is the most frequent alteration in human cancer. As loss of p53 function is associated with increased genetic instability, it is important in genotoxicity testing to explore the role of p53 competency. In vitro model systems for genotoxicity testing are sometimes prone to misleading positive results; some of this loss of predictivity may be caused by p53 inactivation in some cell models. To explore whether impaired p53 function plays a role in mutation sensitivity, TK6 cells (p53 competent) and NH32 cells (p53 deficient) were treated with two known genotoxicants, mitomycin C (MMC) and cytosine arabinoside (araC). Chromosomal damage was assessed in the low dose region by an automated micronucleus system and p53 activity was investigated by gene and protein expression analysis. Cell cycle progression studies were also assessed. Low levels of micronucleus and p53 induction were observed in TK6 cells treated with MMC. On the other hand, higher levels of micronucleus and p53 induction were shown in TK6 cells treated with araC and a G1/S arrest was observed after araC treatment. p53 deficient NH32 cells showed an increased sensitivity of micronucleus (MN) induction after araC treatment compared with TK6 cells and less of an active G1/S phase checkpoint. Thus, impaired p53 function sensitizes cells to genotoxicants and plays a central role in the DNA damage response. This data has clear importance for safety assessment of genotoxicity and shows how crucial p53 competence is.


Asunto(s)
Citarabina/toxicidad , Micronúcleos con Defecto Cromosómico/inducido químicamente , Mitomicina/toxicidad , Mutágenos/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Técnicas de Cultivo de Célula , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Relación Dosis-Respuesta a Droga , Expresión Génica/efectos de los fármacos , Humanos , Proteína p53 Supresora de Tumor/genética
6.
Mutat Res ; 648(1-2): 9-14, 2008 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-18992265

RESUMEN

The alkylating agents methyl methanesulphonate (MMS) and ethyl methanesulphonate (EMS) have non-linear dose-response curves, with a no-observed effect level (NOEL) and a lowest observed effect level (LOEL) for both gross chromosomal damage and mutagenicity. However, the biological mechanism responsible for the NOEL has yet to be identified. A strong candidate is DNA repair as it may be able to efficiently remove alkyl adducts at low doses resulting in a NOEL, but at higher doses fails to fully remove all lesions due to saturation of enzymatic activity resulting in a LOEL and subsequent linear increases in mutagenicity. We therefore assessed the transcriptional status of N-methylpurine-DNA glycoslase (MPG) and O(6)-methylguanine DNA methyltransferase (MGMT), which represent the first line of defence following exposure to alkylating agents through the respective enzymatic removal of N7-alkylG and O(6)-alkylG. The relative MPG and MGMT gene expression profiles were assessed by real-time RT-PCR following exposure to 0-2 microg/ml MMS for 1-24h. MPG expression remained fairly steady, but in contrast significant up-regulation of MGMT was observed when cells were treated with 0.5 and 1.0 microg/ml MMS for 4h (2.5- and 6.5-fold increases respectively). These doses lie within the NOEL for MMS mutagenicity (LOEL is 1.25 microg/ml), thus this boost in MGMT expression at low doses may be responsible for efficiently repairing O(6)methylG lesions and creating the non-linear response for mutations. However, as the LOEL for MMS clastogenicity is 0.85 microg/ml, O(6)-alkylG is unlikely to be responsible for the clastogenicity observed at these concentrations. Consequently, at low doses N7-methylG is possibly the predominant cause of MMS clastogenicity, while O(6)-methylG is more likely to be responsible for MMS mutagenicity, with MGMT up-regulation playing a key role in removal of O(6)-alkylG lesions before they are fixed as permanent point mutations, resulting in non-linear dose-responses for direct acting genotoxins.


Asunto(s)
Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Metilmetanosulfonato/toxicidad , Proteínas Supresoras de Tumor/genética , Regulación hacia Arriba/efectos de los fármacos , Células Cultivadas , Aductos de ADN/análisis , ADN Glicosilasas/genética , Metilasas de Modificación del ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Genes p53/efectos de los fármacos , Humanos , Nivel sin Efectos Adversos Observados , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA