Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Microbiol ; 22(8): 3049-3065, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32216020

RESUMEN

Most of the oil in low temperature, non-uplifted reservoirs is biodegraded due to millions of years of microbial activity, including via methanogenesis from crude oil. To evaluate stimulating additional methanogenesis in already heavily biodegraded oil reservoirs, oil sands samples were amended with nutrients and electron acceptors, but oil sands bitumen was the only organic substrate. Methane production was monitored for over 3000 days. Methanogenesis was observed in duplicate microcosms that were unamended, amended with sulfate or that were initially oxic, however methanogenesis was not observed in nitrate-amended controls. The highest rate of methane production was 0.15 µmol CH4 g-1 oil d-1 , orders of magnitude lower than other reports of methanogenesis from lighter crude oils. Methanogenic Archaea and several potential syntrophic bacterial partners were detected following the incubations. GC-MS and FTICR-MS revealed no significant bitumen alteration for any specific compound or compound class, suggesting that the very slow methanogenesis observed was coupled to bitumen biodegradation in an unspecific manner. After 3000 days, methanogenic communities were amended with benzoate resulting in methanogenesis rates that were 110-fold greater. This suggests that oil-to-methane conversion is limited by the recalcitrant nature of oil sands bitumen, not the microbial communities resident in heavy oil reservoirs.


Asunto(s)
Bacterias/metabolismo , Biodegradación Ambiental , Reactores Biológicos/microbiología , Euryarchaeota/metabolismo , Metano/metabolismo , Petróleo/metabolismo , Anaerobiosis/fisiología , Crecimiento Quimioautotrófico/fisiología , Hidrocarburos/química , Microbiota , Yacimiento de Petróleo y Gas , Sulfatos/metabolismo
2.
Front Microbiol ; 5: 160, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24782848

RESUMEN

Availability of inorganic nutrients, particularly nitrogen and phosphorous, is often a primary control on crude oil hydrocarbon degradation in marine systems. Many studies have empirically determined optimum levels of inorganic N and P for stimulation of hydrocarbon degradation. Nevertheless, there is a paucity of information on fundamental kinetic parameters for nutrient enhanced crude oil biodegradation that can be used to model the fate of crude oil in bioremediation programmes that use inorganic nutrient addition to stimulate oil biodegradation. Here we report fundamental kinetic parameters (Ks and qmax) for nitrate- and phosphate-stimulated crude oil biodegradation under nutrient limited conditions and with respect to crude oil, under conditions where N and P are not limiting. In the marine sediments studied, crude oil degradation was limited by both N and P availability. In sediments treated with 12.5 mg/g of oil but with no addition of N and P, hydrocarbon degradation rates, assessed on the basis of CO2 production, were 1.10 ± 0.03 µmol CO2/g wet sediment/day which were comparable to rates of CO2 production in sediments to which no oil was added (1.05 ± 0.27 µmol CO2/g wet sediment/day). When inorganic nitrogen was added alone maximum rates of CO2 production measured were 4.25 ± 0.91 µmol CO2/g wet sediment/day. However, when the same levels of inorganic nitrogen were added in the presence of 0.5% P w/w of oil (1.6 µmol P/g wet sediment) maximum rates of measured CO2 production increased more than four-fold to 18.40 ± 1.04 µmol CO2/g wet sediment/day. Ks and qmax estimates for inorganic N (in the form of sodium nitrate) when P was not limiting were 1.99 ± 0.86 µmol/g wet sediment and 16.16 ± 1.28 µmol CO2/g wet sediment/day respectively. The corresponding values for P were 63 ± 95 nmol/g wet sediment and 12.05 ± 1.31 µmol CO2/g wet sediment/day. The qmax values with respect to N and P were not significantly different (P < 0.05). When N and P were not limiting Ks and qmax for crude oil were 4.52 ± 1.51 mg oil/g wet sediment and 16.89 ± 1.25 µmol CO2/g wet sediment/day. At concentrations of inorganic N above 45 µmol/g wet sediment inhibition of CO2 production from hydrocarbon degradation was evident. Analysis of bacterial 16S rRNA genes indicated that Alcanivorax spp. were selected in these marine sediments with increasing inorganic nutrient concentration, whereas Cycloclasticus spp. were more prevalent at lower inorganic nutrient concentrations. These data suggest that simple empirical estimates of the proportion of nutrients added relative to crude oil concentrations may not be sufficient to guarantee successful crude oil bioremediation in oxic beach sediments. The data we present also help define the maximum rates and hence timescales required for bioremediation of beach sediments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA