Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 54(5): 2474-90, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25686295

RESUMEN

Treatment of the metallacycle [UN*2(N,C)] [N* = N(SiMe3)2; N,C = CH2SiMe2N(SiMe3)] with [HNEt3][BPh4], [HNEt3]Cl, and [pyH][OTf] (OTf = OSO2CF3) gave the cationic compound [UN*3][BPh4] (1) and the neutral complexes [UN*3X] [X = Cl (3), OTf (4)], respectively. The dinuclear complex [{UN*(µ-N,C)(µ-OTf)}2] (5) and its tetrahydrofuran (THF) adduct [{UN*(N,C)(THF)(µ-OTf)}2] (6) were obtained by thermal decomposition of 4. The successive addition of NEt4CN or KCN to 1 led to the formation of the cyanido-bridged dinuclear compound [(UN*3)2(µ-CN)][BPh4] (7) and the mononuclear mono- and bis(cyanide) complexes [UN*3(CN)] (2) and [M][UN*3(CN)2] [M = NEt4 (8), K(THF)4 (9)], while crystals of [K(18-crown-6)][UN*3(CN)2] (10) were obtained by the oxidation of [K(18-crown-6)][UN*3(CN)] with pyridine N-oxide. The THF adduct of 1, [UN*3(THF)][BPh4], and complexes 2-7, 9 and 10 were characterized by their X-ray crystal structure. In contrast to their U(III) analogues [NMe4][UN*3(CN)] and [K(18-crown-6)]2[UN*3(CN)2] in which the CN anions are coordinated to the metal center via the C atom, complexes 2 and 9 exhibit the isocyanide U-NC coordination mode of the cyanide ligand. This U(III)/U(IV) differentiation has been analyzed using density functional theory calculations. The observed preferential coordinations are well explained considering the electronic structures of the different species and metal-ligand bonding energies. A comparison of the different quantum descriptors, i.e., bond orders, NPA/QTAIM data, and energy decomposition analysis, has allowed highlighting of the subtle balance between covalent, ionic, and steric factors that govern the U-CN/NC bonding.

2.
Inorg Chem ; 53(13): 6995-7013, 2014 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-24933460

RESUMEN

Reactions of [MN*3] (M = Ce, U; N* = N(SiMe3)2) and NR4CN (R = Me, Et, or (n)Bu) or KCN in the presence of 18-crown-6 afforded the series of cyanido-bridged dinuclear compounds [NEt4][(MN*3)2(µ-CN)] (M = Ce, 2a, and U, 2b), [K(18-crown-6)(THF)2][(CeN*3)2(µ-CN)] (2'a), and [K(18-crown-6)][(UN*3)2(µ-CN)] (2'b), and the mononuclear mono-, bis-, and tris(cyanide) complexes [NEt4][MN*3(CN)] (M = Ce, 1a(Et), and U, 1b(Et)), [NMe4][MN*3(CN)] (M = Ce, 1a(Me), and U, 1b(Me)), [K(18-crown-6)][MN*3(CN)] (M = Ce, 1'a, and U, 1'b), [N(n)Bu4]2[MN*3(CN)2] (M = Ce, 3a, and U, 3b), [K(18-crown-6)]2[MN*3(CN)2] (M = Ce, 3'a, and U, 3'b), and [N(n)Bu4]2[MN*2(CN)3] (M = Ce, 4a, and U, 4b). The mono- and bis(cyanide) complexes were found to be in equilibrium. The formation constant of 3'b (K3'b) from 1'b at 10 °C in THF is equal to 5(1) × 10(-3), and -ΔH3'b = 104(2) kJ mol(-1) and -ΔS3'b = 330(5) J mol(-1) K(-1). The bis(cyanide) compound 3a or 3b was slowly transformed in solution into an equimolar mixture of the mono- and tris(cyanide) derivatives with elimination of N(n)Bu4N*. The crystal structures of 1a(Me), 1b(Me), 1'a·toluene, 1'b·toluene, 2'a, 2'b, 3a, 3'a, 3'b, 3'a·2benzene, 3'b·2benzene, 4a·0.5THF, and 4b·Et2O were determined. Crystals of the bis(cyanide) uranium complexes 3'b and 3'b·2benzene are isomorphous with those of the cerium counterparts 3'a and 3'a·2benzene, but they are not isostructural since the data revealed distinct coordination modes of the CN group, through the C or N atom to the U or Ce metal center, respectively. This differentiation has been analyzed using density functional theory calculations. The observed preferential coordination of the cyanide and isocyanide ions toward uranium or cerium in the bis(cyanide) complexes is corroborated by the consideration of the binding energies of these groups to the metals and by the comparison of DFT optimized geometries with the crystal structures. The better affinity of the cyanide ligand toward U(III) over Ce(III) metal center is related to the better energy matching between the 6d/5f uranium orbitals and the cyanide ligand ones, leading to a non-negligible covalent character of the bonding.

3.
Inorg Chem ; 53(9): 4687-97, 2014 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-24749559

RESUMEN

Polyazines emerge as highly selective ligands toward actinide versus lanthanide separation. Electronic structures of several mono- and polyazine f-complexes of general formula MX3L (M(+3) = Ce, Nd, Eu, U, Am, and Cm; X = RCp(-) or NO3(-); L = N-donor ligand) related to Ln(III)/An(III) differentiation have been investigated using scalar relativistic ZORA/DFT calculations. In all cases, DFT calculations predict shorter An-N bonds than Ln-N ones whatever the azine used, in good agreement with available experimental data. The An-N bonds are also characterized by higher stretching frequencies than Ln-N bonds. The electronic structures of all species have been studied using different population analyses, among them natural population (NPA) and the quantum theory of atoms in molecule approach (QTAIM), as well as using different bond indices. The ability for Ln(III)/An(III) differentiation of the terdentate bipyrazolate BPPR ligand in the M(BPPR)(NO3)3 complexes (M(3+) = Ce, Eu, U and Am ; R = H, 2,2-dimethylpropyl) where BPP = 2,6-bis(dialkyl-1H-pyrazol-3-yl)pyridine has been studied, with a special emphasis on the total metal-ligand bonding energy (TBE). The ZORA/DFT approach was found to properly reproduce the higher selectivity of the polyazine BPP ligand compared to monoazines, especially for the Eu(III)/Am(III) pair operating in spent nuclear fuel, using computed TBEs as criterion. Moreover, the orbital part of the total bonding energy appears also to rationalize well the observed selectivity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA