Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(10)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37241429

RESUMEN

The objective of this review is to investigate the potential of functionalized magnetic polymer composites for use in electromagnetic micro-electro-mechanical systems (MEMS) for biomedical applications. The properties that make magnetic polymer composites particularly interesting for application in the biomedical field are their biocompatibility, their adjustable mechanical, chemical, and magnetic properties, as well as their manufacturing versatility, e.g., by 3D printing or by integration in cleanroom microfabrication processes, which makes them accessible for large-scale production to reach the general public. The review first examines recent advancements in magnetic polymer composites that possess unique features such as self-healing capabilities, shape-memory, and biodegradability. This analysis includes an exploration of the materials and fabrication processes involved in the production of these composites, as well as their potential applications. Subsequently, the review focuses on electromagnetic MEMS for biomedical applications (bioMEMS), including microactuators, micropumps, miniaturized drug delivery systems, microvalves, micromixers, and sensors. The analysis encompasses an examination of the materials and manufacturing processes involved and the specific fields of application for each of these biomedical MEMS devices. Finally, the review discusses missed opportunities and possible synergies in the development of next-generation composite materials and bioMEMS sensors and actuators based on magnetic polymer composites.

3.
Nat Biomed Eng ; 3(1): 47-57, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30932072

RESUMEN

The ability to monitor blood flow is critical to patient recovery and patient outcomes after complex reconstructive surgeries. Clinically available wired implantable monitoring technology requires careful fixation for accurate detection and needs to be removed after use. Here, we report the design of a pressure sensor, made entirely of biodegradable materials and based on fringe-field capacitor technology, for measuring arterial blood flow in both contact and non-contact modes. The sensor is operated wirelessly through inductive coupling, has minimal hysteresis, fast response times, excellent cycling stability, is highly robust, allows for easy mounting and eliminates the need for removal, thus reducing the risk of vessel trauma. We demonstrate the operation of the sensor with a custom-made artificial artery model and in vivo in rats. This technology may be advantageous in real-time post-operative monitoring of blood flow after reconstructive surgery.


Asunto(s)
Arterias/fisiología , Circulación Sanguínea/fisiología , Monitoreo Fisiológico/instrumentación , Pulso Arterial/instrumentación , Tecnología Inalámbrica/instrumentación , Anastomosis Quirúrgica , Animales , Arterias/cirugía , Diseño de Equipo , Docilidad , Ratas Sprague-Dawley
4.
Sci Robot ; 3(24)2018 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-33141713

RESUMEN

Tactile sensing is required for the dexterous manipulation of objects in robotic applications. In particular, the ability to measure and distinguish in real time normal and shear forces is crucial for slip detection and interaction with fragile objects. Here, we report a biomimetic soft electronic skin (e-skin) that is composed of an array of capacitors and capable of measuring and discriminating in real time both normal and tangential forces. It is enabled by a three-dimensional structure that mimics the interlocked dermis-epidermis interface in human skin. Moreover, pyramid microstructures arranged along nature-inspired phyllotaxis spirals resulted in an e-skin with increased sensitivity, minimal hysteresis, excellent cycling stability, and response time in the millisecond range. The e-skin provided sensing feedback for controlling a robot arm in various tasks, illustrating its potential application in robotics with tactile feedback.

5.
Adv Mater ; 27(43): 6954-61, 2015 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-26418964

RESUMEN

An array of highly sensitive pressure sensors entirely made of biodegradable materials is presented, designed as a single-use flexible patch for application in cardiovascular monitoring. The high sensitivity in combination with fast response time is unprecedented when compared to recent reports on biodegradable pressure sensors (sensitivity three orders of magnitude higher), as illustrated by pulse wave velocity measurements, toward hypertension detection.


Asunto(s)
Materiales Biocompatibles , Fenómenos Fisiológicos Cardiovasculares , Monitoreo Fisiológico/instrumentación , Presión , Humanos
6.
Philos Trans A Math Phys Eng Sci ; 370(1967): 2418-32, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22509064

RESUMEN

A new generation of partially or even fully biodegradable implants is emerging. The idea of using temporary devices is to avoid a second surgery to remove the implant after its period of use, thereby improving considerably the patient's comfort and safety. This paper provides a state-of-the-art overview and an experimental section that describes the key technological challenges for making biodegradable devices. The general considerations for the design and synthesis of biodegradable components are illustrated with radiofrequency-driven resistor-inductor-capacitor (RLC) resonators made of biodegradable metals (Mg, Mg alloy, Fe, Fe alloys) and biodegradable conductive polymer composites (polycaprolactone-polypyrrole, polylactide-polypyrrole). Two concepts for partially/fully biodegradable wireless implants are discussed, the ultimate goal being to obtain a fully biodegradable sensor for in vivo sensing.


Asunto(s)
Materiales Biocompatibles , Diseño de Equipo , Ondas de Radio
7.
Bioelectromagnetics ; 29(1): 11-9, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17694536

RESUMEN

The aim of this study was to provide the information necessary to enable the comparison of exposure conditions in different human volunteer studies published by the research groups at the Universities of Turku, Swinburne, and Zurich. The latter applied a setup optimized for human volunteer studies in the context of risk assessment while the first two applied a modified commercial mobile phone for which detailed dosimetric data were lacking. While the Zurich Setup exposed the entire cortex of the target hemisphere, the other two setups resulted in only very localized exposure of the upper cheek, and concentrated on a limited area of the middle temporal gyrus just above the ear. The resulting peak spatial SAR averaged over 1 g of the cortex was 0.19 W/kg of the Swinburne Setup, and 0.31 W/kg for the Turku Setup, compared to 1 W/kg for the Zurich Setup. The average exposure of the thalamus was 5% and 9% of the Zurich Setup results for the Swinburne and Turku Setups, respectively. In general, the phone-based setup results in only reasonably defined exposures in a very limited area around the maximum exposure; the exposure of the rest of the cortex was low, and may vary greatly as a function of the setup, position, and local anatomy. The analysis confirms the need for a carefully designed exposure setup that exposes the relevant brain areas to a well-defined level in human volunteer studies, and shows that studies can only be properly compared and replicated if sufficiently detailed dosimetric information is available.


Asunto(s)
Dosis de Radiación , Ondas de Radio , Teléfono Celular , Cognición , Electroencefalografía , Humanos
8.
Bioelectromagnetics ; 29(3): 185-96, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18044740

RESUMEN

Findings from prior studies of possible health and physiological effects from mobile phone use have been inconsistent. Exposure periods in provocation studies have been rather short and personal characteristics of the participants poorly defined. We studied the effect of radiofrequency field (RF) on self-reported symptoms and detection of fields after a prolonged exposure time and with a well defined study group including subjects reporting symptoms attributed to mobile phone use. The design was a double blind, cross-over provocation study testing a 3-h long GSM handset exposure versus sham. The study group was 71 subjects age 18-45, including 38 subjects reporting headache or vertigo in relation to mobile phone use (symptom group) and 33 non-symptomatic subjects. Symptoms were scored on a 7-point Likert scale before, after 1(1/2) and 2(3/4) h of exposure. Subjects reported their belief of actual exposure status. The results showed that headache was more commonly reported after RF exposure than sham, mainly due to an increase in the non-symptom group. Neither group could detect RF exposure better than by chance. A belief that the RF exposure had been active was associated with skin symptoms. The higher prevalence of headache in the non-symptom group towards the end of RF exposure justifies further investigation of possible physiological correlates. The current study indicates a need to better characterize study participants in mobile phone exposure studies and differences between symptom and non-symptom groups.


Asunto(s)
Teléfono Celular , Cefalea/diagnóstico , Cefalea/etiología , Microondas/efectos adversos , Medición de Riesgo/métodos , Adolescente , Adulto , Estudios Cruzados , Método Doble Ciego , Femenino , Humanos , Masculino , Persona de Mediana Edad , Selección de Paciente , Dosis de Radiación , Factores de Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA