Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioessays ; : e2400097, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39248672

RESUMEN

Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.

2.
Plant Physiol Biochem ; 212: 108775, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38810521

RESUMEN

Due to their fixed lifestyle, plants must adapt to abiotic or biotic stresses by orchestrating various responses, including protective and growth control measures. Growth arrest is provoked upon abiotic stress and can impair plant production. Members of the plant-specific GASA (gibberellic acid-stimulated Arabidopsis) gene family play crucial roles in phytohormone responses, abiotic and biotic stresses, and plant growth. Here, we recognized and examined the LmGASA1 gene from the halophyte plant Lobularia maritima and developed marker-free engineered durum wheat plants overexpressing the gene. The LmGASA1 transcript profile revealed that it's induced by stressful events as well as by phytohormones including GA3, MeJA, and ABA, suggesting that the LmGASA1 gene may contribute to these stress and hormone signal transduction pathways. Transient expression of GFP-LmGASA1 fusion in onion epidermal cells indicated that LmGASA1 is localized to the cell membrane. Further analysis showed that overexpression of LmGASA1 in durum wheat plants enhanced tolerance to drought stress compared with that in non-transgenic (NT) plants, imposing no yield penalty and enabling seed production even following drought stress at the vegetative stage. Altogether, our data indicate that LmGASA1 regulates both the scavenging capacity of the antioxidant enzymatic system and the activation of at least six stress-related genes that function as positive regulators of drought stress tolerance. LmGASA1 appears to be a novel gene useful for further functional analysis and potential engineering for drought stress tolerance in crops.


Asunto(s)
Sequías , Proteínas de Plantas , Plantas Modificadas Genéticamente , Triticum , Triticum/genética , Triticum/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Resistencia a la Sequía
3.
Plants (Basel) ; 12(10)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37653962

RESUMEN

Gibberellic acid-stimulated Arabidopsis (GASA) gene family is a class of functional cysteine-rich proteins characterized by an N-terminal signal peptide and a C-terminal-conserved GASA domain with 12 invariant cysteine (Cys) residues. GASA proteins are widely distributed among plant species, and the majority of them are involved in the signal transmission of plant hormones, the regulation of plant development and growth, and the responses to different environmental constraints. To date, their action mechanisms are not completely elucidated. This review reports an overview of the diversity, structure, and subcellular localization of GASA proteins, their involvement in hormone crosstalk and redox regulation during development, and plant responses to abiotic and biotic stresses. Knowledge of this complex regulation can be a contribution to promoting multiple abiotic stress tolerance with potential agricultural applications through the engineering of genes encoding GASA proteins and the production of transgenic plants.

4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36769352

RESUMEN

Cold stress is a key environmental factor affecting plant growth and development, crop productivity, and geographic distribution. Thioredoxins (Trxs) are small proteins that are ubiquitously expressed in all organisms and implicated in several cellular processes, including redox reactions. However, their role in the regulation of cold stress in the halophyte plant Lobularia maritima remains unknown. We recently showed that overexpression of LmTrxh2, which is the gene that encodes the h-type Trx protein previously isolated from L. maritima, led to an enhanced tolerance to salt and osmotic stress in transgenic tobacco. This study functionally characterized the LmTrxh2 gene via its overexpression in tobacco and explored its cold tolerance mechanisms. Results of the RT-qPCR and western blot analyses indicated differential temporal and spatial regulation of LmTrxh2 in L. maritima under cold stress at 4 °C. LmTrxh2 overexpression enhanced the cold tolerance of transgenic tobacco, as evidenced by increased germination rate, fresh weight and catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD) activities; reduced malondialdehyde levels, membrane leakage, superoxide anion (O2-), and hydrogen peroxide (H2O2) levels; and higher retention of chlorophyll than in non-transgenic plants (NT). Furthermore, the transcript levels of reactive oxygen species (ROS)-related genes (NtSOD and NtCAT1), stress-responsive late embryogenis abundant protein 5 (NtLEA5), early response to dehydration 10C (NtERD10C), DRE-binding proteins 1A (NtDREB1A), and cold-responsive (COR) genes (NtCOR15A, NtCOR47, and NtKIN1) were upregulated in transgenic lines compared with those in NT plants under cold stress, indicating that LmTrxh2 conferred cold stress tolerance by enhancing the ROS scavenging ability of plants, thus enabling them to maintain membrane integrity. These results suggest that LmTrxh2 promotes cold tolerance in tobacco and provide new insight into the improvement of cold-stress resistance to cold stress in non-halophyte plants and crops.


Asunto(s)
Brassicaceae , Nicotiana , Antioxidantes/metabolismo , Brassicaceae/genética , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Peróxido de Hidrógeno/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Plantas Tolerantes a la Sal/genética , Estrés Fisiológico/genética , Nicotiana/metabolismo , Frío
5.
Phytochemistry ; 206: 113544, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36464102

RESUMEN

Family members within the plant-specific gibberellic acid-stimulated Arabidopsis (GASA) gene serve a crucial role in plant growth and development, particularly in flower induction and seed development. Through a genome-wide analysis of Triticum turgidum ssp. Durum (durum wheat), we identified 19 GASA genes, designated as TdGASA1‒19. Moreover, the chromosomal locations, exon-intron distribution and the physiochemical properties of these genes were determined and the subcellular localization of their encoded proteins was estimated. Analyses of their domain structure, motif arrangements, and phylogeny revealed four distinct groups that share a conserved GASA domain. Additionally, a real-time q-PCR analysis revealed differential expression patterns of TdGASA genes in various tissues (including leaves, roots, stems, and seeds) and in response to salinity, osmotic stress, and treatment with exogenous phytohormones (abscisic and gibberellic acid), implying that these genes may play a role in the growth, development, and stress responses of Triticum turgidum. Heterologous expression of TdGASA1, TdGASA4, TdGASA14, and TdGASA19 in Saccharomyces cerevisiae improved its tolerance to salt, osmotic, oxidative, and heat stresses, which suggests the involvement of these genes in abiotic stress tolerance mechanisms. The present study is the first to identify and analyze the expression profile of T. turgidum GASA genes, therefore offering novel insights for their further functional characterization, which may serve as a novel resource for molecular breeding of durum wheat.


Asunto(s)
Arabidopsis , Arabidopsis/metabolismo , Triticum/genética , Triticum/metabolismo , Estrés Fisiológico/genética , Giberelinas/farmacología , Giberelinas/metabolismo , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Perfilación de la Expresión Génica
6.
Plants (Basel) ; 11(15)2022 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35956469

RESUMEN

Bioactivities of polysaccharides derived from halophyte plants have gained attention in recent years. The use of biostimulants in agriculture is an innovative method of dealing with environmental stressors affecting plant growth and development. Here, we investigated the use of natural polysaccharides derived from the halophyte plant Lobularia maritima (PSLm) as a biostimulant in durum wheat seedlings under salt stress. Treatment with polysaccharide extract (0.5, 1, and 2 mg/mL PSLm) stimulated in vitro wheat growth, including germination, shoot length, root length, and fresh weight. PSLm at 2 mg/mL provided tolerance to plants against NaCl stress with improved membrane stability and low electrolyte leakage, increased antioxidant activities (catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD)), enhanced leaf chlorophyll fluorescence, proline, and total sugar contents, decreased lipid peroxidation (MDA), and reactive oxygen species (H2O2) levels, and coordinated the efflux and compartmentation of intracellular ions. The expression profile analyses of ten stress-related genes (NHX1, HKT1.4, SOS1, SOD, CAT, GA20-ox1, GA3-ox1, NRT1.1, NRT2.1, and GS) using RT-qPCR revealed the induction of several key genes in durum wheat growing in media supplemented with PSLm extract, even in unstressed conditions that could be related to the observed tolerance. This study revealed that PSLm extract contributes to salt tolerance in durum wheat seedlings, thereby enhancing their reactive oxygen species scavenging ability, and provided evidence for exploring PSLm as a plant biostimulant for sustainable and organic agriculture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA