Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(18)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37765991

RESUMEN

YBa2Cu3O6+x (YBCO) cuprates are semiconductive when oxygen depleted (x < 0.5). They can be used for uncooled thermal detection in the near-infrared: (i) low temperature deposition on silicon substrates, leading to an amorphous phase (a-YBCO); (ii) pyroelectric properties exploited in thermal detectors offering both low noise and fast response above 1 MHz. However, a-YBCO films exhibit a small direct current (DC) electrical conductivity, with strong non-linearity of current-voltage plots. Calcium doping is well known for improving the transport properties of oxygen-rich YBCO films (x > 0.7). In this paper, we consider the performances of pyroelectric detectors made from calcium-doped (10 at. %) and undoped a-YBCO films. First, the surface microstructure, composition, and DC electrical properties of a-Y0.9Ca0.1Ba2Cu3O6+x films were investigated; then devices were tested at 850 nm wavelength and results were analyzed with an analytical model. A lower DC conductivity was measured for the calcium-doped material, which exhibited a slightly rougher surface, with copper-rich precipitates. The calcium-doped device exhibited a higher specific detectivity (D*=7.5×107 cm·Hz/W at 100 kHz) than the undoped device. Moreover, a shorter thermal time constant (<8 ns) was inferred as compared to the undoped device and commercially available pyroelectric sensors, thus paving the way to significant improvements for fast infrared imaging applications.

2.
Open Res Eur ; 2: 88, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37767223

RESUMEN

Background: Kinetic Inductance Travelling Wave Parametric Amplifiers (KITWPAs) are a variant of superconducting amplifier that can potentially achieve high gain with quantum-limited noise performance over broad bandwidth, which is important for many ultra-sensitive experiments. In this paper, we present a novel modelling technique that can better capture the electromagnetic behaviour of a KITWPA without the translation symmetry assumption, allowing us to flexibly explore the use of more complex transmission line structures and better predict their performance. Methods: In order to design a KITWPA with optimal performance, we investigate the use of different superconducting thin film materials, and compare their pros and cons in forming a high-gain low-loss medium feasible for amplification. We establish that if the film thickness can be controlled precisely, the material used has less impact on the performance of the device, as long as it is topologically defect-free and operating within its superconducting regime. With this insight, we propose the use of Titanium Nitride (TiN) film for our KITWPA as its critical temperature can be easily altered to suit our applications. We further investigate the topological effect of different commonly used superconducting transmission line structures with the TiN film, including the effect of various non-conducting materials required to form the amplifier. Results: Both of these comprehensive studies led us to two configurations of the KITWPA: 1) A low-loss 100 nm thick TiN coplanar waveguide amplifier, and 2) A compact 50 nm TiN inverted microstrip amplifier. We utilise the novel modelling technique described in the first part of the paper to explore and investigate the optimal design and operational setup required to achieve high gain with the broadest bandwidth for both KITWPAs, including the effect of loss. Conclusions: Finally, we conclude the paper with the actual layout and the predicted gain-bandwidth product of our KITWPAs.

3.
Opt Express ; 27(9): 13319-13328, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052858

RESUMEN

We designed, fabricated and characterized parallel-plate capacitor lumped-element kinetic inductance detectors (LEKIDs) to operate at near-infrared and optical wavelengths (0.3 -1 µm). The widely used interdigitated capacitor is replaced by a parallel-plate capacitor which, for a given resonance frequency, has a larger capacitance value within a much smaller space allowing to strongly reduce the size of the pixels. The parallel-plate capacitor LEKID array comprises 10 × 10 pixels. The inductive meander is patterned from stoichiometric 52 nm-thick TiN film (Tc ≈4.6 K). The parallel-plate capacitor is made of a TiN base electrode, Al2O3 dielectric and Nb upper electrode. More than 90 resonances out of 100 within the 0.994-1.278 GHz band were identified. The resonances exhibit internal Q-factors up to ∼370 000 at 72 mK. The array was illuminated using a white light and 890 nm monochromatic near infrared LEDs. The estimated quasiparticle lifetime is τqp≈13 µs.

4.
Opt Express ; 26(8): 10007-10012, 2018 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-29715936

RESUMEN

The six-level phase mask (SLPM) can be used in a focal plane as an efficient coronagraph [Opt. Express 22, 1884 (2014)]. It has several advantages: high-contrast imaging in broadband with small inner working angle; easy fabrication at low cost by photolithography and reactive ion etching processes; easy implementation with no need of pupil apodization. We present in this paper the first laboratory results demonstrating the high performance of a SLPM with an unobscured pupil. The on-axis attenuation reaches 2 × 10-5 at λ = 800 nm and is better than 10-4 over a 10% spectral bandwidth and better than 10-3 over a 20% bandwidth. Finally, the detection of a planet can be achieved down to 1 λ/D.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA