Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Talanta ; 281: 126659, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39260259

RESUMEN

Gas chromatography is a reference method for gas analysis. As part of efforts to miniaturize gas chromatography systems, the miniaturization of detectors is essential. In this work, we report a new integrated photonic platform for gas chromatography analyte detection. The fabricated silicon die integrates Mach-Zehnder interferometers into low dead volume microfluidic channels, with coherent cost-effective detection scheme with a fixed 850 nm wavelength laser. A proof of concept is demonstrated with the separation and detection of three volatile organic compounds: heptane, octane, and toluene. Peaks' widths at half height range from 1 to 5 s. Peaks are very well resolved by our system, which acquires more than 100 points per second. From a heptane dilution range, we evaluate the limit of detection of our system to be the headspace of a 0.26 % heptane concentration solution. To our knowledge, these are the first integrated Mach-Zehnder interferometers reported for gas chromatography detection. This work could open new strategies for fast low cost and low limit of detection specific gas chromatography silicon micro-detectors.

2.
Anal Chem ; 94(10): 4359-4365, 2022 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-35235299

RESUMEN

Digital microfluidics platforms (DMFPs) have shown their efficiency in sample handling, using elementary operations that may be combined to perform complex applications. In this article, we present a new platform for gaseous samples handling involving a two-step digital preconcentration using the miniaturized preconcentrators of the DMFP. Choosing n-pentane at very low concentrations as a model for highly volatile compounds, poorly retained on the sorbent, the DMFP allowed bypassing the limit set by the breakthrough volume by repeating an elementary operation. It enabled a 5-fold increase of preconcentration factors in comparison to a single preconcentration step and an easier monitoring of the model compound. Promising applications are expected, as this system could be adapted to most volatile compound analysis devices, including micro gas chromatographs, to replace the current single-step preconcentration systems. By switching to two-step preconcentration with a DMFP, i.e., a digital preconcentration, it would be possible to get more concentrated samples through the column for easier trace analysis.


Asunto(s)
Gases , Microfluídica , Cromatografía de Gases
3.
J Breath Res ; 12(4): 046011, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30008462

RESUMEN

This work presents the performances of silicon micro-preconcentrators chips for breath sampling. The silicon chips were coupled to a handheld battery powered system for breath sampling and direct injection in a laboratory gas chromatography mass spectrometry system through thermal desorption (TD). Performances of micro-preconcentrators were first compared to commercial TD for benzene trapping. Similar chromatographic peaks after gas chromatographic separation were observed while the volume of sample needed was reduced by a factor of 5. Repeatability and day to day variability of the micro-preconcentrators were then studied for a 500 ppb synthetic model mixture injected three times a day four days in a row: 8% and 12% were measured respectively. Micro-preconcentrator to micro-preconcentrator variability was not significant compared to day to day variability. In addition, micro-preconcentrators were tested for breath samples collected in Tedlar® bags. Three analyses of the same breath sample displayed relative standard deviations values below 16% for eight of the ten most intense peaks. Finally, the performances of micro-preconcentrators for breath sampling on a single expiration were illustrated with the example of volatile tobacco markers tracking. The signals of three smoking markers in breath, benzene, 2,5-dimethylfuran, and toluene were studied. Concentrations of benzene and toluene were found to be 10 to 100 higher in the breath of smokers. 2,5-dimethylfuran was only found in the breath of smokers. The elimination kinetics of the markers were followed as well during 4 h: a fast decrease of the signal of the three markers in breath was observed 20 min after smoking in good agreement with what is described in the literature. Those results demonstrate the efficiency of silicon chips for breath sampling, compared to the state of the art techniques. Thanks to miniaturization and lower sample volumes needed, micro-preconcentrators could be in the future a key technology towards portable breath sampling and analysis.


Asunto(s)
Biomarcadores/análisis , Pruebas Respiratorias/instrumentación , Miniaturización/instrumentación , Nicotiana/química , Silicio/química , Compuestos Orgánicos Volátiles/análisis , Benceno/análisis , Furanos/análisis , Cromatografía de Gases y Espectrometría de Masas , Humanos , Fumar , Tolueno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA