Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mol Model ; 30(5): 121, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570393

RESUMEN

CONTEXT: The electronic, discrete water solvation, and vibrational properties of zwitterionic sulfanilic acid were thoroughly investigated using periodic and non-periodic DFT approaches. The periodic-DFT results, obtained by employing the PBE-TS functional (Perdew-Burke-Ernzerhof (PBE) functional with the Tkatchenko and Scheffler (TS) dispersion correction) were first presented in order to analyze the band structures of the studied crystal. An attentive reading of the predicted band structures has shown three lowest gap energies calculated at 4.23, 4.24, and 4.29 eV arising from the Γ→Γ, Γ→Z, and Γ→S transitions, respectively. Then, non-periodic calculations were carried out, at the B3LYP-D3 level of theory (B3LYP functional with the D3 Grimme dispersion correction) in order to optimize the sulfanilic acid-(H2O)10 complex. Starting from the optimized structure, non-covalent interaction calculations were performed and the H-bonding, van der Waals, and steric effect interactions were identified. Finally, the PBE-TS calculations were strengthened by conducting anharmonic B3LYP-D3 calculations in order to achieve a complete decryption of the experimental IR spectrum of sulfanilic acid. The spectral analysis is not limited only to the interpretation of both the NH/CH stretching and fingerprint regions but also extended to the 1800-2600 cm-1 region, which is characterized by a strong anharmonic effect. In the latter wavenumber region, the large experimental IR band centered at 1937 cm-1 is reproduced theoretically employing the anharmonic B3LYP-D3 calculations. The similarity of this band with those usually considered as a fingerprint of zwitterionic amino acids is observed, and its origin is elucidated theoretically. In the vibrational spectroscopy field, the calculations presented in this study are probably the most appropriate for achieving vast analysis and accurate assignments of vibrational spectra of hydrogen bonding compounds recorded in the solid state. METHOD: The periodic and non-periodic calculations were conducted within the Density Functional Theory (DFT) using the Generalized Gradient Approximation (GGA) at the PBE-TS level of theory and B3LYP-D3 functional with the 6-311++G(d,p) basis set, respectively. The PBE-TS and B3LYP-D3/6-311++G(d,p) calculations were performed using the CASTEP and Gaussian 09 programs, respectively. In addition, The non-covalent interactions were calculated by the Multiwfn 3.8 software. The obtained results for different calculations were visualized by employing the visualization tools in Materials Studio, GaussView, VMD, and Gnuplot programs.

2.
J Mol Model ; 30(3): 88, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421474

RESUMEN

CONTEXT: The effects of selected substituent groups (-CH3, -Br, -CO2CH3, -COOH, and -NH2) and their relative positions on the electronic and structural properties of mono-substituted naphthalenes were investigated theoretically. In order to elucidate the suitability of the studied substituents in different fields including chemistry, spectroscopy, and materials sciences, accurate DFT calculations were performed at the dispersion-corrected B3LYP level of theory (B3LYP-D3/6-311 + + G(d,p)), and the obtained results were then validated by extensive comparisons with available experimental data. Among the studied substituents, the -NH2 group causes the maximum reduction of the HOMO-LUMO energy gap. This result revealed clearly the suitability of the -NH2 group, compared to other studied substituents, in the chemical synthesis of future organic-semiconductors having small energy gaps. In addition, the level of theory adopted in this study allowed the fine discrimination between the chemical reactivity parameters of the studied congeners, which is very difficult to perform experimentally. On the other hand, the rotational barriers of the studied non-halogen substituent groups were predicted. The greater sensitivity of the rotational barrier heights to the local environments, arising from intra-molecular interactions, was attributed to the -CH3 group. The torsional frequencies, calculated within the harmonic approximation, were also employed to relatively explore the differences between the environments of the same substituent at two different positions. The usefulness of these results can be manifested in the vibrational spectroscopy field, especially, for the IR/ Raman spectral analysis of polycyclic-aromatic congeners. METHOD: All calculations were conducted within the Density functional theory (DFT) using the so-called dispersion-corrected B3LYP functional (B3LYP-D3) with the carefully selected 6-311 + + G(d,p) basis set. The B3LYP-D3/6-311 + + G(d,p) calculations were performed using the Gaussian 09 program, and the obtained results were visualized by employing the GaussView 6.0.16 program.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA