Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2778: 1-30, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38478268

RESUMEN

ß-barrels are a class of membrane proteins made up of a cylindrical, anti-parallel ß-sheet with a hydrophobic exterior and a hydrophilic interior. The majority of proteins found in the outer membranes (OMs) of Gram-negative bacteria, mitochondria, and chloroplasts are ß-barrel outer membrane proteins (OMPs). ß-barrel OMPs have a diverse repertoire of functions, including nutrient transport, secretion, bacterial virulence, and enzymatic activity. Here, we discuss the broad functional classes of ß-barrel OMPs, how they are folded into the membrane, and the future of ß-barrel OMP research and its applications.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Proteínas de Escherichia coli , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de Escherichia coli/metabolismo , Mitocondrias/metabolismo , Bacterias Gramnegativas/metabolismo , Conformación Proteica en Lámina beta , Pliegue de Proteína
2.
JACS Au ; 3(7): 1952-1964, 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37502163

RESUMEN

Selective incorporation of conformational constraints into thyclotides can be used to modulate their binding to complementary oligonucleotides, increase polarity, and optimize uptake into HCT116 cells without assistance from moieties known to promote cell uptake. The X-ray structure and biophysical studies of a thyclotide-DNA duplex reveal that incorporation of tetrahydrofurans into an aegPNA backbone promotes a helical conformation that enhances binding to complementary DNA and RNA. Selective incorporation of tetrahydrofurans into the aegPNA backbone allows polarity to be increased incrementally so that uptake into HCT116 cells can be optimized. The enhanced binding, polarity, and cellular uptake properties of thyclotides were used to demonstrate effective inhibition of microRNA-21 in HCT116 cells.

3.
Oncogene ; 41(1): 72-82, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34675408

RESUMEN

Small intestine adenocarcinoma is a rare intestinal malignancy with distinct clinical, pathological, and molecular characteristics. Recently, a fusion of the intestinal stem-cell marker olfactomedin 4 (OLFM4) and the proto-oncogene RET has been identified in a small intestine adenocarcinoma patient. Here we investigated the biological effects of OLFM4-RET fusion and whether it can initiate tumorigenesis in small intestine. OLFM4 expression was found to be frequently lost or reduced in human small intestine adenocarcinoma, and its downregulation correlated with high tumor grade and advanced tumor stage. Expression of OLFM4-RET fusion-induced cellular transformation in HEK293 cells and blocked RET-induced inhibition of colony growth in HuTu 80 small intestine adenocarcinoma cells. Further, expression of OLFM4-RET activated the RAS-RAF-MAPK and STAT3 cell signaling pathways in both HEK293 cells and HuTu 80 cells. OLFM4-RET expression in HEK293 cells upregulated multiple families of genes related to carcinogenesis, cancer progression, and metastasis. Targeted expression of OLFM4-RET in the small intestine led to the development of hyperplasia, adenoma, or adenocarcinoma in transgenic mice. Our study suggests that OLFM4-RET is an oncogenic driver of small intestine tumorigenesis. Therefore, the small intestine adenocarcinoma patients with OLFM4-RET fusion may benefit from treatment with RET kinase inhibitor.


Asunto(s)
Adenocarcinoma/genética , Neoplasias Intestinales/genética , Oncogenes/genética , Proteínas Proto-Oncogénicas c-ret/metabolismo , Animales , Células HEK293 , Humanos , Neoplasias Intestinales/patología , Ratones , Transducción de Señal , Transfección
4.
J Mol Biol ; 433(16): 166894, 2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-33639212

RESUMEN

ß-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial ß-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial ß-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/fisiología , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Cloroplastos/genética , Cloroplastos/metabolismo , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Unión Proteica , Relación Estructura-Actividad
5.
Nucleic Acids Res ; 49(2): 713-725, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33406227

RESUMEN

We report a series of synthetic, nucleic acid mimics with highly customizable thermodynamic binding to DNA. Incorporation of helix-promoting cyclopentanes into peptide nucleic acids (PNAs) increases the melting temperatures (Tm) of PNA+DNA duplexes by approximately +5°C per cyclopentane. Sequential addition of cyclopentanes allows the Tm of PNA + DNA duplexes to be systematically fine-tuned from +5 to +50°C compared with the unmodified PNA. Containing only nine nucleobases and an equal number of cyclopentanes, cpPNA-9 binds to complementary DNA with a Tm around 90°C. Additional experiments reveal that the cpPNA-9 sequence specifically binds to DNA duplexes containing its complementary sequence and functions as a PCR clamp. An X-ray crystal structure of the cpPNA-9-DNA duplex revealed that cyclopentanes likely induce a right-handed helix in the PNA with conformations that promote DNA binding.


Asunto(s)
Ciclopentanos/química , ADN/metabolismo , Conformación de Ácido Nucleico , Ácidos Nucleicos de Péptidos/química , Calorimetría , Dicroismo Circular , Cristalografía por Rayos X , Ciclopentanos/metabolismo , Modelos Moleculares , Desnaturalización de Ácido Nucleico , Ácidos Nucleicos de Péptidos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Espectrofotometría Ultravioleta , Termodinámica , Temperatura de Transición
6.
Commun Biol ; 3(1): 676, 2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168926

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Elife ; 92020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33089781

RESUMEN

Bacterial contact-dependent growth inhibition (CDI) systems use a type Vb secretion mechanism to export large CdiA toxins across the outer membrane by dedicated outer membrane transporters called CdiB. Here, we report the first crystal structures of two CdiB transporters from Acinetobacter baumannii and Escherichia coli. CdiB transporters adopt a TpsB fold, containing a 16-stranded transmembrane ß-barrel connected to two periplasmic domains. The lumen of the CdiB pore is occluded by an N-terminal α-helix and the conserved extracellular loop 6; these two elements adopt different conformations in the structures. We identified a conserved DxxG motif located on strand ß1 that connects loop 6 through different networks of interactions. Structural modifications of DxxG induce rearrangement of extracellular loops and alter interactions with the N-terminal α-helix, preparing the system for α-helix ejection. Using structural biology, functional assays, and molecular dynamics simulations, we show how the barrel pore is primed for CdiA toxin secretion.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Proteínas de la Membrana/química , Toxinas Biológicas , Acinetobacter baumannii/metabolismo , Secuencias de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Proteínas de la Membrana/metabolismo , Simulación de Dinámica Molecular , Dominios Proteicos
8.
Nat Commun ; 11(1): 3290, 2020 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-32620929

RESUMEN

In mitochondria, ß-barrel outer membrane proteins mediate protein import, metabolite transport, lipid transport, and biogenesis. The Sorting and Assembly Machinery (SAM) complex consists of three proteins that assemble as a 1:1:1 complex to fold ß-barrel proteins and insert them into the mitochondrial outer membrane. We report cryoEM structures of the SAM complex from Myceliophthora thermophila, which show that Sam50 forms a 16-stranded transmembrane ß-barrel with a single polypeptide-transport-associated (POTRA) domain extending into the intermembrane space. Sam35 and Sam37 are located on the cytosolic side of the outer membrane, with Sam35 capping Sam50, and Sam37 interacting extensively with Sam35. Sam35 and Sam37 each adopt a GST-like fold, with no functional, structural, or sequence similarity to their bacterial counterparts. Structural analysis shows how the Sam50 ß-barrel opens a lateral gate to accommodate its substrates.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Membranas Mitocondriales/metabolismo , Biosíntesis de Proteínas , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Detergentes/química , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Mitocondrias/genética , Mitocondrias/ultraestructura , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/genética , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Complejos Multiproteicos/ultraestructura , Conformación Proteica , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Sordariales/genética , Sordariales/metabolismo
9.
Commun Biol ; 2: 358, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31602407

RESUMEN

The TonB-ExbB-ExbD molecular motor harnesses the proton motive force across the bacterial inner membrane to couple energy to transporters at the outer membrane, facilitating uptake of essential nutrients such as iron and cobalamine. TonB physically interacts with the nutrient-loaded transporter to exert a force that opens an import pathway across the outer membrane. Until recently, no high-resolution structural information was available for this unique molecular motor. We published the first crystal structure of ExbB-ExbD in 2016 and showed that five copies of ExbB are arranged as a pentamer around a single copy of ExbD. However, our spectroscopic experiments clearly indicated that two copies of ExbD are present in the complex. To resolve this ambiguity, we used single-particle cryo-electron microscopy to show that the ExbB pentamer encloses a dimer of ExbD in its transmembrane pore, and not a monomer as previously reported. The revised stoichiometry has implications for motor function.


Asunto(s)
Proteínas de Escherichia coli/química , Microscopía por Crioelectrón , Escherichia coli , Proteínas de Escherichia coli/ultraestructura , Modelos Moleculares , Estructura Molecular
10.
FEBS Open Bio ; 9(9): 1536-1551, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31237118

RESUMEN

LonA proteases and ClpB chaperones are key components of the protein quality control system in bacterial cells. LonA proteases form a unique family of ATPases associated with diverse cellular activities (AAA+ ) proteins due to the presence of an unusual N-terminal region comprised of two domains: a ß-structured N domain and an α-helical domain, including the coiled-coil fragment, which is referred to as HI(CC). The arrangement of helices in the HI(CC) domain is reminiscent of the structure of the H1 domain of the first AAA+ module of ClpB chaperones. It has been hypothesized that LonA proteases with a single AAA+ module may also contain a part of another AAA+ module, the full version of which is present in ClpB. Here, we established and tested the structural basis of this hypothesis using the known crystal structures of various fragments of LonA proteases and ClpB chaperones, as well as the newly determined structure of the Escherichia coli LonA fragment (235-584). The similarities and differences in the corresponding domains of LonA proteases and ClpB chaperones were examined in structural terms. The results of our analysis, complemented by the finding of a singular match in the location of the most conserved axial pore-1 loop between the LonA NB domain and the NB2 domain of ClpB, support our hypothesis that there is a structural and functional relationship between two coiled-coil fragments and implies a similar mechanism of engagement of the pore-1 loops in the AAA+ modules of LonAs and ClpBs.


Asunto(s)
Endopeptidasa Clp/química , Endopeptidasa Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Proteasa La/química , Proteasa La/metabolismo , Modelos Moleculares , Conformación Proteica
11.
Curr Res Struct Biol ; 1: 13-20, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34235464

RESUMEN

Energy-dependent Lon proteases play a key role in cellular regulation by degrading short-lived regulatory proteins and misfolded proteins in the cell. The structure of the catalytically inactive S679A mutant of Escherichia coli LonA protease (EcLon) has been determined by cryo-EM at the resolution of 3.5 Å. EcLonA without a bound substrate adopts a hexameric open-spiral quaternary structure that might represent the resting state of the enzyme. Upon interaction with substrate the open-spiral hexamer undergoes a major conformational change resulting in a compact, closed-circle hexamer as in the recent structure of a complex of Yersinia pestis LonA with a protein substrate. This major change is accomplished by the rigid-body rearrangement of the individual domains within the protomers of the complex around the hinge points in the interdomain linkers. Comparison of substrate-free and substrate-bound Lon structures allows to mark the location of putative pivotal points involved in such conformational changes.

12.
Philos Trans R Soc Lond B Biol Sci ; 372(1726)2017 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-28630161

RESUMEN

The bacterial outer membrane contains phospholipids in the inner leaflet and lipopolysaccharide (LPS) in the outer leaflet. Both proteins and LPS must be frequently inserted into the outer membrane to preserve its integrity. The protein complex that inserts LPS into the outer membrane is called LptDE, and consists of an integral membrane protein, LptD, with a separate globular lipoprotein, LptE, inserted in the barrel lumen. The protein complex that inserts newly synthesized outer-membrane proteins (OMPs) into the outer membrane is called the BAM complex, and consists of an integral membrane protein, BamA, plus four lipoproteins, BamB, C, D and E. Recent structural and functional analyses illustrate how these two complexes insert their substrates into the outer membrane by distorting the membrane component (BamA or LptD) to directly access the lipid bilayer.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Fenómenos Fisiológicos Bacterianos , Lipopolisacáridos/metabolismo , Membranas Mitocondriales/metabolismo
13.
Sci Rep ; 6: 38564, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924846

RESUMEN

Many G protein-coupled receptors show constitutive activity, resulting in the production of a second messenger in the absence of an agonist; and naturally occurring constitutively active mutations in receptors have been implicated in diseases. To gain insight into mechanistic aspects of constitutive activity, we report here the 3.3 Å crystal structure of a constitutively active, agonist-bound neurotensin receptor (NTSR1) and molecular dynamics simulations of agonist-occupied and ligand-free receptor. Comparison with the structure of a NTSR1 variant that has little constitutive activity reveals uncoupling of the ligand-binding domain from conserved connector residues, that effect conformational changes during GPCR activation. Furthermore, molecular dynamics simulations show strong contacts between connector residue side chains and increased flexibility at the intracellular receptor face as features that coincide with robust signalling in cells. The loss of correlation between the binding pocket and conserved connector residues, combined with altered receptor dynamics, possibly explains the reduced neurotensin efficacy in the constitutively active NTSR1 and a facilitated initial engagement with G protein in the absence of agonist.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Receptores de Neurotensina/química , Sitios de Unión , Dominio Catalítico , Línea Celular , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/metabolismo , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Unión Proteica , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Relación Estructura-Actividad
14.
Structure ; 24(12): 2127-2137, 2016 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-27839951

RESUMEN

Paralogous enzymes arise from gene duplication events that confer a novel function, although it is unclear how cross-reaction between the original and duplicate protein interaction network is minimized. We investigated HPr:EIsugar and NPr:EINtr, the initial complexes of paralogous phosphorylation cascades involved in sugar import and nitrogen regulation in bacteria, respectively. Although the HPr:EIsugar interaction has been well characterized, involving multiple complexes and transient interactions, the exact nature of the NPr:EINtr complex was unknown. We set out to identify the key features of the interaction by performing binding assays and elucidating the structure of NPr in complex with the phosphorylation domain of EINtr (EINNtr), using a hybrid approach involving X-ray, homology, and sparse nuclear magnetic resonance. We found that the overall fold and active-site structure of the two complexes are conserved in order to maintain productive phosphorylation, however, the interface surface potential differs between the two complexes, which prevents cross-reaction.


Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/química , Sistema de Fosfotransferasa de Azúcar del Fosfoenolpiruvato/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Modelos Moleculares , Simulación del Acoplamiento Molecular , Monosacáridos/metabolismo , Nitrógeno/metabolismo , Resonancia Magnética Nuclear Biomolecular , Proteínas de Unión a Fosfato , Fosforilación , Unión Proteica , Dominios Proteicos , Homología Estructural de Proteína
15.
Nature ; 538(7623): 60-65, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27654919

RESUMEN

In Gram-negative bacteria, outer membrane transporters import nutrients by coupling to an inner membrane protein complex called the Ton complex. The Ton complex consists of TonB, ExbB, and ExbD, and uses the proton motive force at the inner membrane to transduce energy to the outer membrane via TonB. Here, we structurally characterize the Ton complex from Escherichia coli using X-ray crystallography, electron microscopy, double electron-electron resonance (DEER) spectroscopy, and crosslinking. Our results reveal a stoichiometry consisting of a pentamer of ExbB, a dimer of ExbD, and at least one TonB. Electrophysiology studies show that the Ton subcomplex forms pH-sensitive cation-selective channels and provide insight into the mechanism by which it may harness the proton motive force to produce energy.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/química , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Fuerza Protón-Motriz , Cristalografía por Rayos X , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/ultraestructura , Complejos Multiproteicos/ultraestructura
16.
Structure ; 24(6): 965-976, 2016 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-27161977

RESUMEN

Incorporation of lipopolysaccharide (LPS) into the outer membrane of Gram-negative bacteria is essential for viability, and is accomplished by a two-protein complex called LptDE. We solved crystal structures of the core LptDE complexes from Yersinia pestis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and a full-length structure of the K. pneumoniae LptDE complex. Our structures adopt the same plug and 26-strand ß-barrel architecture found recently for the Shigella flexneri and Salmonella typhimurium LptDE structures, illustrating a conserved fold across the family. A comparison of the only two full-length structures, SfLptDE and our KpLptDE, reveals a 21° rotation of the LptD N-terminal domain that may impart flexibility on the trans-envelope LptCAD scaffold. Utilizing mutagenesis coupled to an in vivo functional assay and molecular dynamics simulations, we demonstrate the critical role of Pro231 and Pro246 in the function of the LptD lateral gate that allows partitioning of LPS into the outer membrane.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Bacterias Gramnegativas/metabolismo , Lipopolisacáridos/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Bacterias Gramnegativas/química , Modelos Moleculares , Unión Proteica , Dominios Proteicos , Estructura Secundaria de Proteína
17.
Structure ; 19(4): 447-59, 2011 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-21481769

RESUMEN

The membrane-bound Toll-like receptors (TLRs) trigger innate immune responses after recognition of a wide variety of pathogen-derived compounds. Despite the wide range of ligands recognized by TLRs, the receptors share a common structural framework in their extracellular, ligand-binding domains. These domains all adopt horseshoe-shaped structures built from leucine-rich repeat motifs. Typically, on ligand binding, two extracellular domains form an "m"-shaped dimer sandwiching the ligand molecule bringing the transmembrane and cytoplasmic domains in close proximity and triggering a downstream signaling cascade. Although the ligand-induced dimerization of these receptors has many common features, the nature of the interactions of the TLR extracellular domains with their ligands varies markedly between TLR paralogs.


Asunto(s)
Estructura Terciaria de Proteína , Transducción de Señal , Receptores Toll-Like/química , Receptores Toll-Like/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Homología de Secuencia de Aminoácido , Receptores Toll-Like/genética
18.
Biochim Biophys Acta ; 1789(9-10): 667-74, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19595807

RESUMEN

Toll-like receptors (TLRs) recognize conserved molecular patterns in invading pathogens and trigger innate immune responses. TLR3 recognizes dsRNA, a molecular signature of most viruses via its ectodomain (ECD). The TLR3-ECD structure consists of a 23 turn coil bent into the shape of a horseshoe with specialized domains capping the N and C-terminal ends of the coil. TLR3-ECDs bind as dimeric units to dsRNA oligonucleotides of at least 45 bp in length, the minimal length required for signal transduction. X-ray analysis has shown that each TLR3-ECD of a dimer binds dsRNA at two sites located at opposite ends of the TLR3 "horseshoe" on the one lateral face that lacks N-linked glycans. Intermolecular contacts between the C-terminal domains of two TLR3-ECDs stabilize the dimer and position the C-terminal residues within 20-25 A of each other, which is thought to be essential for transducing a signal across the plasma membrane in intact TLR3 molecules. Interestingly, in TLRs 1, 2 and 4, which bind lipid ligands using very different interactions from TLR3, the ligands nevertheless promote the formation of a dimer in which the same two lateral surfaces as in the TLR3-ECD:dsRNA complex face each other, bringing their C-termini in close proximity. Thus, a pattern is emerging in which pathogen-derived substances bind to TLR-ECDs, thereby promoting the formation of a dimer in which the glycan-free ligand binding surfaces face each other and the two C-termini are brought in close proximity for signal transduction.


Asunto(s)
ARN Bicatenario/genética , Receptor Toll-Like 3/genética , Animales , Membrana Celular/metabolismo , Análisis Mutacional de ADN , Dimerización , Relación Dosis-Respuesta a Droga , Glicosilación , Humanos , Cinética , Ligandos , Modelos Moleculares , Conformación Molecular , Polimorfismo de Nucleótido Simple , Estructura Terciaria de Proteína , Transducción de Señal
19.
Acta Biochim Pol ; 55(2): 281-96, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18506223

RESUMEN

We carried out chymotryptic digestion of multimeric ATP-dependent Lon protease from Escherichia coli. Four regions sensitive to proteolytic digestion were located in the enzyme and several fragments corresponding to the individual structural domains of the enzyme or their combinations were isolated. It was shown that (i) unlike the known AAA(+) proteins, the ATPase fragment (A) of Lon has no ATPase activity in spite of its ability to bind nucleotides, and it is monomeric in solution regardless of the presence of any effectors; (ii) the monomeric proteolytic domain (P) does not display proteolytic activity; (iii) in contrast to the inactive counterparts, the AP fragment is an oligomer and exhibits both the ATPase and proteolytic activities. However, unlike the full-length Lon, its AP fragment oligomerizes into a dimer or a tetramer only, exhibits the properties of a non-processive protease, and undergoes self-degradation upon ATP hydrolysis. These results reveal the crucial role played by the non-catalytic N fragment of Lon (including its coiled-coil region), as well as the contribution of individual domains to creation of the quaternary structure of the full-length enzyme, empowering its function as a processive protease.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteasa La/química , Proteasa La/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Dominio Catalítico , Quimotripsina , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/aislamiento & purificación , Fragmentos de Péptidos/metabolismo , Péptido Hidrolasas , Proteasa La/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
20.
Science ; 320(5874): 379-81, 2008 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-18420935

RESUMEN

Toll-like receptor 3 (TLR3) recognizes double-stranded RNA (dsRNA), a molecular signature of most viruses, and triggers inflammatory responses that prevent viral spread. TLR3 ectodomains (ECDs) dimerize on oligonucleotides of at least 40 to 50 base pairs in length, the minimal length required for signal transduction. To establish the molecular basis for ligand binding and signaling, we determined the crystal structure of a complex between two mouse TLR3-ECDs and dsRNA at 3.4 angstrom resolution. Each TLR3-ECD binds dsRNA at two sites located at opposite ends of the TLR3 horseshoe, and an intermolecular contact between the two TLR3-ECD C-terminal domains coordinates and stabilizes the dimer. This juxtaposition could mediate downstream signaling by dimerizing the cytoplasmic Toll interleukin-1 receptor (TIR) domains. The overall shape of the TLR3-ECD does not change upon binding to dsRNA.


Asunto(s)
ARN Bicatenario/química , ARN Bicatenario/metabolismo , Transducción de Señal , Receptor Toll-Like 3/química , Receptor Toll-Like 3/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Cristalografía por Rayos X , Dimerización , Humanos , Ligandos , Ratones , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , FN-kappa B/metabolismo , Conformación de Ácido Nucleico , Conformación Proteica , Estructura Terciaria de Proteína , Receptor Toll-Like 3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA