Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38004013

RESUMEN

Background and Objectives: Herein we used numerical analysis to study different biomechanical behaviors of mandibular bone subjected to 0.6 N, 1.2 N, and 2.4 N orthodontic loads during 0-8 mm periodontal breakdown using the Tresca failure criterion. Additionally, correlations with earlier FEA reports found potential ischemic and resorptive risks. Materials and Methods: Eighty-one models (nine patients) and 243 simulations (intrusion, extrusion, rotation, tipping, and translation) were analyzed. Results: Intrusion and extrusion displayed after 4 mm bone loss showed extended stress display in the apical and middle third alveolar sockets, showing higher ischemic and resorptive risks for 0.6 N. Rotation, translation, and tipping displayed the highest stress amounts, and cervical-third stress with higher ischemic and resorptive risks after 4 mm loss for 0.6 N. Conclusions: Quantitatively, rotation, translation, and tipping are the most stressful movements. All three applied forces produced similar stress-display areas for all movements and bone levels. The stress doubled for 1.2 N and quadrupled for 2.4 N when compared with 0.6 N. The differences between the three loads consisted of the stress amounts displayed in color-coded areas, while their location and extension remained constant. Since the MHP was exceeded, a reduction in the applied force to under 0.6 N (after 4 mm of bone loss) is recommended for reducing ischemic and resorptive risks. The stress-display pattern correlated with horizontal periodontal-breakdown simulations.


Asunto(s)
Hueso Esponjoso , Técnicas de Movimiento Dental , Humanos , Técnicas de Movimiento Dental/efectos adversos , Simulación por Computador , Análisis de Elementos Finitos , Ligamento Periodontal
2.
Healthcare (Basel) ; 11(19)2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37830659

RESUMEN

This finite elements analysis (FEA) assessed the accuracy of maximum shear stress criteria (Tresca) in the study of orthodontic internal surface resorption and the absorption-dissipation ability of dental tissues. The present study was conducted over eighty-one models totaling 324 simulations with various bone loss levels (0-8 mm), where 0.6 N and 1.2 N were applied in the intrusion, extrusion, rotation, tipping, and translation movements. Tresca criteria displayed localized high-stress areas prone to resorption for all situations, better visible in the dentine component. The internal resorptive risks are less than external ones, seeming to increase with the progression of the periodontal breakdown, especially after 4 mm. The internal and external surface high-stress areas are strictly correlated. The qualitative stress display for both forces was almost similar. The rotation and tipping displayed the highest resorptive risks for the pulp chamber, decreasing with bone loss. The resorptive risks seem to increase along with the progression of periodontal breakdown if the same applied force is kept. The dentine resemblance to ductile based on its high absorption-dissipation ability seems correct. Tresca seems to supply a better predictability of the prone-to-resorption areas than the other failure criteria.

3.
Medicina (Kaunas) ; 59(8)2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37629752

RESUMEN

Background and Objectives: This numerical analysis investigated the biomechanical behavior of the mandibular bone as a structure subjected to 0.5 N of orthodontic force during periodontal breakdown. Additionally, the suitability of the five most used failure criteria (Von Mises (VM), Tresca (T), maximum principal (S1), minimum principal (S3), and hydrostatic pressure (HP)) for the study of bone was assessed, and a single criterion was identified for the study of teeth and the surrounding periodontium (by performing correlations with other FEA studies). Materials and Methods: The finite element analysis (FEA) employed 405 simulations over eighty-one mandibular models with variable levels of bone loss (0-8 mm) and five orthodontic movements (intrusion, extrusion, tipping, rotation, and translation). For the numerical analysis of bone, the ductile failure criteria are suitable (T and VM are adequate for the study of bone), with Tresca being more suited. S1, S3, and HP criteria, due to their distinctive design dedicated to brittle materials and liquids/gas, only occasionally correctly described the bone stress distribution. Results: Only T and VM displayed a coherent and correlated gradual stress increase pattern for all five movements and levels of the periodontal breakdown. The quantitative values provided by T and VM were the highest (for each movement and level of bone loss) among all five criteria. The MHP (maximum physiological hydrostatic pressure) was exceeded in all simulations since the mandibular bone is anatomically less vascularized, and the ischemic risks are reduced. Only T and VM displayed a correlated (both qualitative and quantitative) stress increase for all five movements. Both T and VM displayed rotation and translation, closely followed by tipping, as stressful movements, while intrusion and extrusion were less stressful for the mandibular bone. Conclusions: Based on correlations with earlier numerical studies on the same models and boundary conditions, T seems better suited as a single unitary failure criterion for the study of teeth and the surrounding periodontium.


Asunto(s)
Enfermedades Óseas Metabólicas , Hueso Esponjoso , Humanos , Análisis de Elementos Finitos , Ligamento Periodontal , Mandíbula
4.
Healthcare (Basel) ; 11(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37239733

RESUMEN

This Finite Elements Analysis (FEA) assessed the accuracy of Tresca failure criteria (maximum shear stress) for the study of external root resorption. Additionally, the tooth absorption-dissipation ability was assessed. Overall, 81 models of the second mandibular premolar, out of a total of 324 simulations, were involved. Five orthodontic movements (intrusion, extrusion, rotation, translation, and tipping) were simulated under 0.6 N and 1.2 N in a horizontal progressive periodontal breakdown simulation of 0-8 mm. In all simulations, Tresca criteria accurately displayed the localized areas of maximum stress prone to external resorption risks, seeming to be adequate for the study of the resorptive process. The localized areas were better displayed in the radicular dentine-cementum component than in the entire tooth structure. The rotation and translation seem prone to a higher risk of external root resorption after 4 mm of loss. The resorptive risks seem to increase along with the progression of periodontal breakdown if the same amount of applied force is guarded. The localized resorption-prone areas follow the progression of bone loss. The two light forces displayed similar extensions of maximum stress areas. The stress displayed in the coronal dentine decreases along with the progression of bone loss. The absorption-dissipation ability of the tooth is about 87.99-97.99% of the stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA