Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39289030

RESUMEN

Genetic interactions are adaptive within a species. Hybridization can disrupt such species-specific genetic interactions and creates novel interactions that alter the hybrid progeny overall fitness. Hybrid incompatibility, which refers to degenerative genetic interactions that decrease the overall hybrid survival and sterility, is one of the results from combining two diverged genomes in hybrids. The discovery of spontaneous lethal tumorigenesis and underlying genetic interactions in select hybrids between diverged Xiphophorus species showed that lethal pathological process can result from degenerative genetic interactions. Such genetic interactions leading to lethal phenotype are thought to shield gene flow between diverged species. However, hybrids between certain Xiphophorus species do not develop such tumors. Here we report the identification of a locus residing in the genome of one Xiphophorus species that represses an oncogene from a different species. Our finding provides insights into normal and pathological pigment cell development, regulation and a molecular mechanism in hybrid incompatibility.

2.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826429

RESUMEN

Genetic interactions are adaptive within a species. Hybridization can disrupt such species-specific genetic interactions and creates novel interactions that alter the hybrid progeny overall fitness. Hybrid incompatibility, which refers to degenerative genetic interactions that decrease the overall hybrid survival, is one of the results from combining two diverged genomes in hybrids. The discovery of spontaneous lethal tumorigenesis and underlying genetic interactions in select hybrids between diverged Xiphophorus species showed that lethal pathological process can result from degenerative genetic interactions. Such genetic interactions leading to lethal phenotype are thought to shield gene flow between diverged species. However, hybrids between certain Xiphophorus species do not develop such tumors. Here we report the identification of a locus residing in the genome of one Xiphophorus species that represses an oncogene from a different species. Our finding provides insights into normal and pathological pigment cell development, regulation and molecular mechanism in hybrid incompatibility. Significance: The Dobzhansky-Muller model states epistatic interactions occurred between genes in diverged species underlies hybrid incompatibility. There are a few vertebrate interspecies hybrid cases that support the Dobzhansky-Muller model. This study reports a fish hybrid system where incompatible genetic interactions are involved in neuronal regulation of pigment cell biology, and also identified a novel point of regulation for pigment cells.

3.
Artículo en Inglés | MEDLINE | ID: mdl-37614078

RESUMEN

Diet is an external factor that affects the physiological baseline of research animals. It can shape gut microbiome, which can impact the host. As a result, dietary variation can challenge experimental reproducibility and data integration across studies when not appropriately considered. To control for diet-induced variation, reference diets have been developed for common biomedical models. However, such reference diets have not yet been developed for nontraditional model organisms, such as Xiphophorus species. In this study, we compared two diets designed for zebrafish, a commercial zebrafish diet (Gemma and GEM), and a proposed zebrafish reference diet developed by the Watts laboratory at the University of Alabama at Birmingham (WAT) to the Xiphophorus Genetic Stock Center custom diet (CON) to evaluate the influence of diet on the Xiphophorus gut microbiome. Xiphophorus maculatus were fed the three diets from 2 to 6 months of age. Feces were collected and the gut microbiome was assessed using 16S rRNA sequencing every month. We observed substantial diet-driven variation in the gut microbiome. Our results indicate that diets developed specifically for zebrafish can affect the gut microbiome composition and may not be optimal for Xiphophorus.

4.
Proc Natl Acad Sci U S A ; 117(47): 29786-29794, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33168740

RESUMEN

Mixing genomes of different species by hybridization can disrupt species-specific genetic interactions that were adapted and fixed within each species population. Such disruption can predispose the hybrids to abnormalities and disease that decrease the overall fitness of the hybrids and is therefore named as hybrid incompatibility. Interspecies hybridization between southern platyfish and green swordtails leads to lethal melanocyte tumorigenesis. This occurs in hybrids with tumor incidence following progeny ratio that is consistent with two-locus interaction, suggesting melanoma development is a result of negative epistasis. Such observations make Xiphophorus one of the only two vertebrate hybrid incompatibility examples in which interacting genes have been identified. One of the two interacting loci has been characterized as a mutant epidermal growth factor receptor. However, the other locus has not been identified despite over five decades of active research. Here we report the localization of the melanoma regulatory locus to a single gene, rab3d, which shows all expected features of the long-sought oncogene interacting locus. Our findings provide insights into the role of egfr regulation in regard to cancer etiology. Finally, they provide a molecular explainable example of hybrid incompatibility.


Asunto(s)
Ciprinodontiformes/genética , Enfermedades de los Peces/genética , Hibridación Genética , Melanoma/veterinaria , Modelos Genéticos , Animales , Animales Modificados Genéticamente , Carcinogénesis/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Femenino , Proteínas de Peces/genética , Sitios Genéticos , Especiación Genética , Masculino , Melanoma/genética , Modelos Animales , Especificidad de la Especie , Proteínas de Unión al GTP rab3/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA