Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
NPJ Digit Med ; 6(1): 32, 2023 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-36871119

RESUMEN

Physical function decline due to aging or disease can be assessed with quantitative motion analysis, but this currently requires expensive laboratory equipment. We introduce a self-guided quantitative motion analysis of the widely used five-repetition sit-to-stand test using a smartphone. Across 35 US states, 405 participants recorded a video performing the test in their homes. We found that the quantitative movement parameters extracted from the smartphone videos were related to a diagnosis of osteoarthritis, physical and mental health, body mass index, age, and ethnicity and race. Our findings demonstrate that at-home movement analysis goes beyond established clinical metrics to provide objective and inexpensive digital outcome metrics for nationwide studies.

2.
Annu Rev Public Health ; 44: 131-150, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36542772

RESUMEN

Health behaviors are inextricably linked to health and well-being, yet issues such as physical inactivity and insufficient sleep remain significant global public health problems. Mobile technology-and the unprecedented scope and quantity of data it generates-has a promising but largely untapped potential to promote health behaviors at the individual and population levels. This perspective article provides multidisciplinary recommendations on the design and use of mobile technology, and the concomitant wealth of data, to promote behaviors that support overall health. Using physical activity as anexemplar health behavior, we review emerging strategies for health behavior change interventions. We describe progress on personalizing interventions to an individual and their social, cultural, and built environments, as well as on evaluating relationships between mobile technology data and health to establish evidence-based guidelines. In reviewing these strategies and highlighting directions for future research, we advance the use of theory-based, personalized, and human-centered approaches in promoting health behaviors.


Asunto(s)
Promoción de la Salud , Salud Pública , Humanos , Conductas Relacionadas con la Salud , Ejercicio Físico , Tecnología
3.
J Biomech ; 144: 111312, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191434

RESUMEN

Modifying the foot progression angle during walking can reduce the knee adduction moment, a surrogate measure of medial knee loading. However, not all individuals reduce their knee adduction moment with the same modification. This study evaluates whether a personalized approach to prescribing foot progression angle modifications increases the proportion of individuals with medial knee osteoarthritis who reduce their knee adduction moment, compared to a non-personalized approach. Individuals with medial knee osteoarthritis (N=107) walked with biofeedback instructing them to toe-in and toe-out by 5° and 10° relative to their self-selected angle. We selected individuals' personalized foot progression angle as the modification that maximally reduced their larger knee adduction moment peak. Additionally, we used lasso regression to identify which secondary kinematic changes made a 10° toe-in gait modification more effective at reducing the first knee adduction moment peak. Seventy percent of individuals reduced their larger knee adduction moment peak by at least 5% with a personalized foot progression angle modification, which was more than (p≤0.002) the 23-57% of individuals who reduced it with a uniformly assigned 5° or 10° toe-in or toe-out modification. When toeing-in, greater reductions in the first knee adduction moment peak were related to an increased frontal-plane tibia angle (knee more medial than ankle), a more valgus knee abduction angle, reduced contralateral pelvic drop, and a more medialized center of pressure in the foot reference frame. In summary, personalization increases the proportion of individuals with medial knee osteoarthritis who may benefit from a foot progression angle modification.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/terapia , Marcha , Pie , Articulación de la Rodilla , Fenómenos Biomecánicos
4.
Ann Phys Rehabil Med ; 65(6): 101634, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35091113

RESUMEN

BACKGROUND: Despite the benefits of physical activity for individuals with knee osteoarthritis (KOA), physical activity levels are low in this population. OBJECTIVES: We conducted a repeated cross-sectional study to compare mindset about physical activity among individuals with and without KOA and to investigate whether mindset relates to physical activity. METHODS: Participants with (n = 150) and without (n = 152) KOA completed an online survey at enrollment (T1). Participants with KOA repeated the survey 3 weeks later (T2; n = 62). The mindset questionnaire, scored from 1 to 4, assessed the extent to which individuals associate the process of exercising with less appeal-focused qualities (e.g., boring, painful, isolating, and depriving) versus appeal-focused (e.g., fun, pleasurable, social, and indulgent). Using linear regression, we examined the relationship between mindset and having KOA, and, in the subgroup of KOA participants, the relationship between mindset at T1 and self-reported physical activity at T2. We also compared mindset between people who use medication for management and those who use exercise. RESULTS: Within the KOA group, a more appeal-focused mindset was associated with higher future physical activity (ß=38.72, p = 0.006) when controlling for demographics, health, and KOA symptoms. Individuals who used exercise with or without pain medication or injections had a more appeal-focused mindset than those who used medication or injections without exercise (p<0.001). A less appeal-focused mindset regarding physical activity was not significantly associated with KOA (ß = -0.14, p = 0.067). Further, the mindset score demonstrated strong internal consistency (α = 0.92; T1; n = 150 and α = 0.92; T2; n = 62) and test-retest reliability (intraclass correlation coefficient (ICC) > 0.84, p < 0.001) within the KOA sample. CONCLUSIONS: In individuals with KOA, mindset is associated with future physical activity levels and relates to the individual's management strategy. Mindset is a reliable and malleable construct and may be a valuable target for increasing physical activity and improving adherence to rehabilitation strategies involving exercise among individuals with KOA.


Asunto(s)
Osteoartritis de la Rodilla , Humanos , Osteoartritis de la Rodilla/terapia , Osteoartritis de la Rodilla/complicaciones , Reproducibilidad de los Resultados , Estudios Transversales , Encuestas y Cuestionarios
5.
J Sport Health Sci ; 11(1): 43-49, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34509714

RESUMEN

BACKGROUND: Eccentric exercise increases muscle fascicle lengths; however, the mechanisms behind this adaptation are still unknown. This study aimed to determine whether biceps femoris long head (BFlh) fascicle length increases in response to 3 weeks of eccentric exercise training are the result of an in-series addition of sarcomeres within the muscle fibers. METHODS: Ten recreationally active participants (age = 27 ± 3 years; mass = 70 ± 14 kg; height = 174 ± 9 cm; mean ± SD) completed 3 weeks of Nordic hamstring exercise (NHE) training on a custom exercise device that was instrumented with load cells. We collected in vivo sarcomere and muscle fascicle images of the BFlh in 2 regions (central and distal) by using microendoscopy and 3 dimension ultrasonography. We then estimated sarcomere length, sarcomere number, and fascicle length before and after the training intervention. RESULTS: Eccentric knee flexion strength increased after the training (15%; p < 0.001; ηp2 = 0.75). Further, we found a significant increase in fascicle length (21%; p < 0.001; ηp2 = 0.81) and sarcomere length (17%; p < 0.001; ηp2 = 0.90) in the distal but not in the central portion of the muscle. The estimated number of sarcomeres in series did not change in either region. CONCLUSION: Fascicle length adaptations appear to be heterogeneous in the BFlh in response to 3 weeks of NHE training. An increase in sarcomere length, rather than the addition of sarcomeres in series, appears to underlie increases in fascicle length in the distal region of the BFlh. The mechanism driving regional increases in fascicle and sarcomere length remains unknown, but we speculate that it may be driven by regional changes in the passive tension of muscle or connective tissue adaptations.


Asunto(s)
Músculos Isquiosurales , Sarcómeros , Adaptación Fisiológica , Adulto , Ejercicio Físico/fisiología , Músculos Isquiosurales/diagnóstico por imagen , Músculos Isquiosurales/fisiología , Humanos , Fuerza Muscular/fisiología , Adulto Joven
6.
J Biomech ; 48(10): 2214-6, 2015 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-25895644

RESUMEN

The current method of visualizing pressure and shear data under a subject's foot during gait is the Pedotti, or "butterfly" diagram. This method of force platform data visualization was introduced in the 1970s to display the projection of the ground reaction force vector in the sagittal plane. The purpose of the current study was to examine individual sub-components of the vectors displayed in Pedotti diagrams, in order to better understand the relationship between one foot region and another. For this, new instrumentation was used that allows multiple Pedotti diagrams to be constructed at any instant during the gait cycle. The custom built shear-and-pressure-evaluating camera system (SPECS) allows for simultaneous recordings of pressure and both components of the horizontal force vector (medio-lateral and antero-posterior) at distinctive regions under one's foot during gait. Data analysis of such recordings affirms three conclusions: (i) pressure and shear values on individual sites on the plantar surface of the foot are not associated in a linear manner, (ii) force vectors in the heel and forefoot regions exhibit horizontal force components that oppose one another, and similarly, (iii) force vectors in the frontal plane transecting the forefoot region also exhibit medial-lateral shear components that counteract one another. This approach sheds light on individual vectors that collectively sum to each vector displayed in a Pedotti diagram. The results indicate that shearing between the foot and the ground is not simply a passive event. The structures of the arches and/or muscular activities are major contributors to the observed interfacial stresses.


Asunto(s)
Fenómenos Fisiológicos de la Piel , Caminata/fisiología , Fenómenos Biomecánicos , Interpretación Estadística de Datos , Antepié Humano/fisiología , Marcha , Talón/fisiología , Humanos , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA