Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Light Sci Appl ; 13(1): 156, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977674

RESUMEN

Heterogeneous and monolithic integration of the versatile low-loss silicon nitride platform with low-temperature materials such as silicon electronics and photonics, III-V compound semiconductors, lithium niobate, organics, and glasses has been inhibited by the need for high-temperature annealing as well as the need for different process flows for thin and thick waveguides. New techniques are needed to maintain the state-of-the-art losses, nonlinear properties, and CMOS-compatible processes while enabling this next generation of 3D silicon nitride integration. We report a significant advance in silicon nitride integrated photonics, demonstrating the lowest losses to date for an anneal-free process at a maximum temperature 250 °C, with the same deuterated silane based fabrication flow, for nitride and oxide, for an order of magnitude range in nitride thickness without requiring stress mitigation or polishing. We report record low anneal-free losses for both nitride core and oxide cladding, enabling 1.77 dB m-1 loss and 14.9 million Q for 80 nm nitride core waveguides, more than half an order magnitude lower loss than previously reported sub 300 °C process. For 800 nm-thick nitride, we achieve as good as 8.66 dB m-1 loss and 4.03 million Q, the highest reported Q for a low temperature processed resonator with equivalent device area, with a median of loss and Q of 13.9 dB m-1 and 2.59 million each respectively. We demonstrate laser stabilization with over 4 orders of magnitude frequency noise reduction using a thin nitride reference cavity, and using a thick nitride micro-resonator we demonstrate OPO, over two octave supercontinuum generation, and four-wave mixing and parametric gain with the lowest reported optical parametric oscillation threshold per unit resonator length. These results represent a significant step towards a uniform ultra-low loss silicon nitride homogeneous and heterogeneous platform for both thin and thick waveguides capable of linear and nonlinear photonic circuits and integration with low-temperature materials and processes.

2.
Nat Commun ; 14(1): 3080, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248247

RESUMEN

Cold atoms are important for precision atomic applications including timekeeping and sensing. The 3D magneto-optical trap (3D-MOT), used to produce cold atoms, will benefit from photonic integration to improve reliability and reduce size, weight, and cost. These traps require the delivery of multiple, large area, collimated laser beams to an atomic vacuum cell. Yet, to date, beam delivery using an integrated waveguide approach has remained elusive. Here we report the demonstration of a 87Rb 3D-MOT using a fiber-coupled photonic integrated circuit to deliver all beams to cool and trap > 1 ×106 atoms to near 200 µK. The silicon nitride photonic circuit transforms fiber-coupled 780 nm cooling and repump light via waveguides to three mm-width non-diverging free-space cooling and repump beams directly to the rubidium cell. This planar, CMOS foundry-compatible integrated beam delivery is compatible with other components, such as lasers and modulators, promising system-on-chip solutions for cold atom applications.

3.
Opt Express ; 30(5): 6960-6969, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299469

RESUMEN

Atomic, molecular and optical (AMO) visible light systems are the heart of precision applications including quantum, atomic clocks and precision metrology. As these systems scale in terms of number of lasers, wavelengths, and optical components, their reliability, space occupied, and power consumption will push the limits of using traditional laboratory-scale lasers and optics. Visible light photonic integration is critical to advancing AMO based sciences and applications, yet key performance aspects remain to be addressed, most notably waveguide losses and laser phase noise and stability. Additionally, a visible light integrated solution needs to be wafer-scale CMOS compatible and capable of supporting a wide array of photonic components. While the regime of ultra-low loss has been achieved at telecommunication wavelengths, progress at visible wavelengths has been limited. Here, we report the lowest waveguide losses and highest resonator Qs to date in the visible range, to the best of our knowledge. We report waveguide losses at wavelengths associated with strontium transitions in the 461 nm to 802 nm wavelength range, of 0.01 dB/cm to 0.09 dB/cm and associated intrinsic resonator Q of 60 Million to 9.5 Million, a decrease in loss by factors of 6x to 2x and increase in Q by factors of 10x to 1.5x over this visible wavelength range. Additionally, we measure an absorption limited loss and Q of 0.17 dB/m and 340 million at 674 nm. This level of performance is achieved in a wafer-scale foundry compatible Si3N4 platform with a 20 nm thick core and TEOS-PECVD deposited upper cladding oxide, and enables waveguides for different wavelengths to be fabricated on the same wafer with mask-only changes per wavelength. These results represent a significant step forward in waveguide platforms that operate in the visible, opening up a wide range of integrated applications that utilize atoms, ions and molecules including sensing, navigation, metrology and clocks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA