Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39265618

RESUMEN

In recent years, the study of magnetic topological materials, with their variety of exotic physics, has significantly flourished. In this work, we predict the interplay of magnetism and topology in the non-centrosymmetric ternary manganese compound MnIn$_2$Te$_4$ under external hydrostatic pressure, using first-principles calculations and symmetry analyses. At ambient pressure, the ground state of the system is an antiferromagnetic insulator. With the application of a small hydrostatic pressure ($\sim$0.50 GPa), it undergoes a magnetic transition, and the ferromagnetic state becomes energetically favorable. At $\sim$2.92 GPa, the ferromagnetic system undergoes a transition into a Weyl semimetallic phase, which hosts multiple Weyl points in the bulk. The presence of non-trivial Weyl points have been verified by Wilson bands computations and the presence of characteristic surface Fermi arcs. Remarkably, we discover that the number of Weyl points in this system can be controlled by pressure and that these manifest in an anomalous Hall conductivity (AHC). In addition to proposing a new candidate magnetic topological material, our work demonstrates that pressure can be an effective way to induce and control topological phases, as well as AHC, in magnetic materials. These properties may allow our proposed material to be used as a novel pressure-controlled Hall switch.

2.
J Phys Condens Matter ; 36(12)2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-38056011

RESUMEN

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT) calculations, we systematically studied the electronic band structure of Mn3Ge in the vicinity of the Fermi level. We observe several bands crossing the Fermi level, confirming the metallic nature of the studied system. We further observe several flat bands along various high symmetry directions, consistent with the DFT calculations. The calculated partial density of states suggests a dominant Mn 3dorbital contribution to the total valence band DOS. With the help of orbital-resolved band structure calculations, we qualitatively identify the orbital information of the experimentally obtained band dispersions. Out-of-plane electronic band dispersions are explored by measuring the ARPES data at various photon energies. Importantly, our study suggests relatively weaker electronic correlations in Mn3Ge compared to Mn3Sn.

3.
J Phys Condens Matter ; 33(37)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34186528

RESUMEN

Multifold fermion systems feature free fermionic excitations, which have no counterparts in high-energy physics, and exhibit several unconventional properties. Using first-principles calculations, we predict that strain engineering can be used to control the distribution of topological charges in transition metal silicide candidate CoSi, hosting multifold fermions. We demonstrate that breaking the rotational symmetry of the system, by choosing a suitable strain, destroys the multifold fermions, and at the same time results in the creation of Weyl points. We introduce a low energy effective model to complement the results obtained from density functional calculations. Our findings suggest that strain-engineering is a useful approach to tune topological properties of multifold fermions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA