Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Evol ; 14(2): e10996, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38352202

RESUMEN

Extreme weather conditions, like heatwave events, are becoming more frequent with climate change. Animals often modify their behaviour to cope with environmental changes and extremes. During heat stress conditions, individuals change their spatial behaviour and increase the use of shaded areas to assist with thermoregulation. Here, we suggest that for social species, these behavioural changes and ambient conditions have the potential to influence an individual's position in its social network, and the social network structure as a whole. We investigated whether heat stress conditions (quantified through the temperature humidity index) and the resulting use of shaded areas, influence the social network structure and an individual's connectivity in it. We studied this in free-ranging sheep in the arid zone of Australia, GPS-tracking all 48 individuals in a flock. When heat stress conditions worsened, individuals spent more time in the shade and the network was more connected (higher density) and less structured (lower modularity). Furthermore, we then identified the behavioural change that drove the altered network structure and showed that an individual's shade use behaviour affected its social connectivity. Interestingly, individuals with intermediate shade use were most strongly connected (degree, strength, betweenness), indicating their importance for the connectivity of the social network during heat stress conditions. Heat stress conditions, which are predicted to increase in severity and frequency due to climate change, influence resource use within the ecological environment. Importantly, our study shows that these heat stress conditions also affect the animal's social environment through the changed social network structure. Ultimately, this could have further flow on effects for social foraging and individual health since social structure drives information and disease transmission.

2.
Am Nat ; 201(6): 851-863, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37229713

RESUMEN

AbstractEnvironmental temperatures potentially influence reproductive performance and sexual selection by restricting opportunities for activity. However, explicit tests of the behavioral mechanisms linking thermal variation to mating and reproductive performance are rare. We address this gap in a temperate lizard by combining social network analysis with molecular pedigree reconstruction in a large-scale thermal manipulation experiment. Populations exposed to cool thermal regimes presented fewer high-activity days compared with populations exposed to a warmer regime. While plasticity in thermal activity responses in males masked overall differences in activity levels, prolonged restriction nevertheless affected the timing and consistency of male-female interactions. Females were less capable than males of compensating for lost activity time under cold stress, and less active females in this group were significantly less likely to reproduce. While sex-biased activity suppression appeared to limit male mating rates, this did not correspond to a heightened intensity of sexual selection or shifts in the targets of sexual selection. In many populations facing thermal activity restriction, sexual selection on males may play a limited role relative to other thermal performance traits in facilitating adaptation.


Asunto(s)
Preferencia en el Apareamiento Animal , Reproducción , Animales , Femenino , Masculino , Reproducción/fisiología , Temperatura , Preferencia en el Apareamiento Animal/fisiología , Adaptación Fisiológica , Aclimatación , Conducta Sexual Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA