RESUMEN
Habenaria is a large genus of terrestrial orchids distributed throughout the tropical and subtropical regions of the world. The integrity and monophyly of this genus have been under discussion for many years, and at one time or another, several genera have been either included in a broadly defined Habenaria or segregated from it. In this study, the phylogenetic relationships of the Neotropical members of the genus and selected groups of African Habenaria were investigated using DNA sequences from the nuclear internal transcribed spacer (ITS) region and the plastid matK gene sampled from 151 taxa of Habenaria from the Neotropics (ca. 51% of the total) as well as 20 species of Habenaria and Bonatea from the Old World. Bayesian and parsimony trees were congruent with each other, and in all analyses, the Neotropical species formed a highly supported group. African species of Habenaria in sections Dolichostachyae, Podandria, Diphyllae, Ceratopetalae and Bilabrellae, and the Neotropical clade formed a highly supported "core Habenaria clade", which includes the type species of the genus from the New World. The topology of the trees indicates an African origin for the Neotropical clade and the low sequence divergence among the Neotropical species suggests a recent radiation of the genus in the New World. Species of Bonatea and Habenaria sections Chlorinae and Multipartitae formed a well-supported clade that was sister to the "core Habenaria clade". The Neotropical clade consists of at least 21 well-supported subgroups, but all Neotropical sections of the current sectional classification are paraphyletic or polyphyletic and will need extensive revision and recircumscription. Most of the Neotropical subgroups formed morphologically uniform assemblage of species, but some cases of morphological divergence within subgroups and convergence between subgroups indicated that morphology alone can be misleading for inferring relationships within the genus. The genera Bertauxia, Kusibabella and Habenella, segregated from New World Habenaria, are not monophyletic and a revision of the sectional classification rather than a generic division seems most appropriate. Our results do not support an extensive generic fragmentation of Habenaria as previously suggested and will provide a framework for revising the infrageneric classification and investigating the patterns of morphological evolution and geographical distribution of the genus in the New World.