Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(6): 7219-7231, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38308580

RESUMEN

This study investigated the redox exsolution of Ni nanoparticles from a nanoporous La0.52Sr0.28Ti0.94Ni0.06O3 perovskite. The characteristics of exsolved Ni nanoparticles including their size, population, and surface concentration were deeply analyzed by environmental scanning electron microscopy (ESEM), transmission electron microscopy-energy dispersive X-ray spectroscopy (TEM-EDX) mapping, and hydrogen temperature-programmed reduction (H2-TPR). Ni exsolution was triggered in hydrogen as early as 400 °C, with the highest catalytic activity for low-temperature CO oxidation achieved after a reduction step at 500 °C, despite only a 10% fraction of Ni exsolved. The activity and stability of exsolved nanoparticles were compared with their impregnated counterparts on a perovskite material with a similar chemical composition (La0.65Sr0.35TiO3) and a comparable specific surface area and Ni loading. After an aging step at 800 °C, the catalytic activity of exsolved Ni nanoparticles at 300 °C was found to be 10 times higher than that of impregnated ones, emphasizing the thermal stability of Ni nanoparticles prepared by redox exsolution.

2.
Sensors (Basel) ; 23(19)2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37837016

RESUMEN

Electrochemical NOx sensors based on yttria-stabilized zirconia (YSZ) provide a reliable onboard way to control NOx emissions from glass-melting furnaces. The main limitation is the poisoning of this sensor by sulfur oxides (SOx) contained in the stream. To overcome this drawback, an "SO2 trap" with high SOx storage capacity and low affinity to NOx is required. Two CuO/BaO/SBA-15 traps with the same CuO loading (6.5 wt.%) and different BaO loadings (5 and 24.5 wt.%, respectively) were synthetized, thoroughly characterized and evaluated as SO2 traps. The results show that the 6.5%CuO/5%BaO/SBA-15 trap displays the highest SO2 adsorption capacity and can fully adsorb SO2 for a specific period of time, while additionally displaying a very low NO adsorption capacity. A suitable quantity of this material located upstream of the sensor could provide total protection of the NOx sensor against sulfur poisoning in glass-furnace exhausts.

3.
J Environ Sci (China) ; 99: 311-323, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183710

RESUMEN

Photochemical aging of volatile organic compounds (VOCs) in the atmosphere is an important source of secondary organic aerosol (SOA). To evaluate the formation potential of SOA at an urban site in Lyon (France), an outdoor experiment using a Potential Aerosol Mass (PAM) oxidation flow reactor (OFR) was conducted throughout entire days during January-February 2017. Diurnal variation of SOA formations and their correlation with OH radical exposure (OHexp), ambient pollutants (VOCs and particulate matters, PM), Relative Humidity (RH), and temperature were explored in this study. Ambient urban air was exposed to high concentration of OH radicals with OHexp in range of (0.2-1.2)×1012 molecule/(cm3•sec), corresponding to several days to weeks of equivalent atmospheric photochemical aging. The results informed that urban air at Lyon has high potency to contribute to SOA, and these SOA productions were favored from OH radical photochemical oxidation rather than via ozonolysis. Maximum SOA formation (36 µg/m3) was obtained at OHexp of about 7.4 × 1011molecule/(cm3•sec), equivalent to approximately 5 days of atmospheric oxidation. The correlation between SOA formation and ambient environment conditions (RH & temperature, VOCs and PM) was observed. It was the first time to estimate SOA formation potential from ambient air over a long period in urban environment of Lyon.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Francia , Material Particulado , Fotoquímica
4.
Environ Sci Technol ; 52(5): 3312-3319, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29357247

RESUMEN

Diesel particulate filters (DPFs) are commonly employed in modern passenger cars to comply with current particulate matter (PM) emission standards. DPFs requires periodic regeneration to remove the accumulated matter. During the process, high-concentration particles, in both nucleation and accumulation modes, are emitted. Here, we report new information on particle morphology and chemical composition of fine (FPs) and ultrafine particles (UFPs) measured downstream of the DPF during active regeneration of two Euro 5 passenger cars. The first vehicle was equipped with a close-coupled diesel oxidation catalyst (DOC) and noncatalyzed DPF combined with fuel borne catalyst and the second one with DOC and a catalyzed-diesel particle filter (CDPF). Differences in PM emission profiles of the two vehicles were related to different after treatment design, regeneration strategies, and vehicle characteristics and mileage. Particles in the nucleation mode consisted of ammonium bisulfate, sulfate and sulfuric acid, suggesting that the catalyst desulfation is the key process in the formation of UFPs. Larger particles and agglomerates, ranging from 90 to 600 nm, consisted of carbonaceous material (soot and soot aggregates) coated by condensable material including organics, ammonium bisulfate and sulfuric acid. Particle emission in the accumulation mode was due to the reduced filtration efficiency (soot cake oxidation) throughout the regeneration process.


Asunto(s)
Material Particulado , Emisiones de Vehículos , Filtración , Tamaño de la Partícula , Hollín
5.
Environ Sci Technol ; 45(24): 10591-7, 2011 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-22050688

RESUMEN

A Diesel Particulate Filter (DPF) regeneration process was investigated during aftertreatment exhaust of a simulated diesel engine under the influence of a Diesel Oxidation Catalyst (DOC). Aerosol mass spectrometry analysis showed that the presence of the DOC decreases the Organic Carbon (OC) fraction adsorbed to soot particles. The activation energy values determined for soot nanoparticles oxidation were 97 ± 5 and 101 ± 8 kJ mol(-1) with and without the DOC, respectively; suggesting that the DOC does not facilitate elementary carbon oxidation. The minimum temperature necessary for DPF regeneration was strongly affected by the presence of the DOC in the aftertreatment. The conversion of NO to NO(2) inside the DOC induced the DPF regeneration process at a lower temperature than O(2) (ΔT = 30 K). Also, it was verified that the OC fraction, which decreases in the presence of the DOC, plays an important role to ignite soot combustion.


Asunto(s)
Contaminantes Atmosféricos/química , Material Particulado/química , Emisiones de Vehículos/análisis , Contaminantes Atmosféricos/análisis , Contaminación del Aire/prevención & control , Catálisis , Oxidación-Reducción , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA