Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biomaterials ; 293: 121979, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586146

RESUMEN

Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.


Asunto(s)
Sistema Nervioso , Compuestos de Sulfhidrilo , Ratones , Animales , Compuestos de Sulfhidrilo/química , Electrodos , Prótesis e Implantes , Encéfalo
2.
J Neural Eng ; 19(3)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35523152

RESUMEN

Objective.Intraneural nerve interfaces often operate in a monopolar configuration with a common and distant ground electrode. This configuration leads to a wide spreading of the electric field. Therefore, this approach is suboptimal for intraneural nerve interfaces when selective stimulation is required.Approach.We designed a multilayer electrode array embedding three-dimensional concentric bipolar (CB) electrodes. First, we validated the higher stimulation selectivity of this new electrode array compared to classical monopolar stimulation using simulations. Next, we compared themin-vivoby intraneural stimulation of the rabbit optic nerve and recording evoked potentials in the primary visual cortex.Main results.Simulations showed that three-dimensional CB electrodes provide a high localisation of the electric field in the tissue so that electrodes are electrically independent even for high electrode density. Experimentsin-vivohighlighted that this configuration restricts spatial activation in the visual cortex due to the fewer fibres activated by the electric stimulus in the nerve.Significance.Highly focused electric stimulation is crucial to achieving high selectivity in fibre activation. The multilayer array embedding three-dimensional CB electrodes improves selectivity in optic nerve stimulation. This approach is suitable for other neural applications, including bioelectronic medicine.


Asunto(s)
Potenciales Evocados Visuales , Corteza Visual , Animales , Estimulación Eléctrica/métodos , Electrodos , Electrodos Implantados , Nervio Óptico/fisiología , Conejos , Corteza Visual/fisiología
3.
J Neural Eng ; 18(4)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33823498

RESUMEN

Objective. Optic nerve's intraneural stimulation is an emerging neuroprosthetic approach to provide artificial vision to totally blind patients. An open question is the possibility to evoke individual non-overlapping phosphenes via selective intraneural optic nerve stimulation. To begin answering this question, first, we aim at showing in preclinical experiments with animals that each intraneural electrode could evoke a distinguishable activity pattern in the primary visual cortex.Approach. We performed both patterned visual stimulation and patterned electrical stimulation in healthy rabbits while recording evoked cortical activity with an electrocorticogram array in the primary visual cortex. Electrical stimulation was delivered to the optic nerve with the intraneural array OpticSELINE. We used a support vector machine algorithm paired to a linear regression model to classify cortical responses originating from visual stimuli located in different portions of the visual field and electrical stimuli from the different electrodes of the OpticSELINE.Main results. Cortical activity induced by visual and electrical stimulation could be classified with nearly 100% accuracy relative to the specific location in the visual field or electrode in the array from which it originated. For visual stimulation, the accuracy increased with the separation of the stimuli and reached 100% for separation higher than 7°. For electrical stimulation, at low current amplitudes, the accuracy increased with the distance between electrodes, while at higher current amplitudes, the accuracy was nearly 100% already for the shortest separation.Significance. Optic nerve's intraneural stimulation with the OpticSELINE induced discernible cortical activity patterns. These results represent a necessary condition for an optic nerve prosthesis to deliver vision with non-overlapping phosphene. However, clinical investigations will be required to assess the translation of these results into perceptual phenomena.


Asunto(s)
Potenciales Evocados Visuales , Nervio Óptico , Algoritmos , Animales , Estimulación Eléctrica , Electrodos Implantados , Potenciales Evocados , Humanos , Aprendizaje Automático , Estimulación Luminosa , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA