Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400567, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39297213

RESUMEN

Synthesized SnO2 NPs demonstrate potential capacity to adsorb toxic azo dye. Powder X-ray diffraction and SEM imaging confirmed the rutile phase and spherical morphology of SnO2 NPs. Average particle size has been confirmed to be approximately 3 nm through TEM analysis. Adsorption capacity is attributed to the high surface and presence of oxygen vacancy confirmed through BET and XPS, respectively. To mitigate the leaching of NPs in treated water, the encapsulation of NPs in sodium alginate (SA) has been proposed as an environmentally friendly, biocompatible, and economic solution. This study specifically focuses on investigating the parameters for the encapsulation of NPs within a sodium alginate matrix using CaCl2 as cross-linker, including effect of physical shape of encapsulation, effect of sodium alginate and CaCl2 concentration on the encapsulation efficiency and overall adsorption efficiency. Experimental results indicated that the physical form of encapsulation, such as spherical, wire-like, or irregular shape maintained consistent adsorption efficiency, which indicates its versatility. For effective encapsulation of NPs and adsorption, SA and CaCl2 concentration are suggested to be within the range of 0.2-0.3 g and > 0.5 M, respectively..

2.
Cell Biochem Funct ; 42(7): e4108, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39228159

RESUMEN

Short-chain fatty acids (SCFAs) are essential molecules produced by gut bacteria that fuel intestinal cells and may also influence overall health. An imbalance of SCFAs can result in various acute and chronic diseases, including diabetes, obesity and colorectal cancer (CRC). This review delves into the multifaceted roles of SCFAs, including a brief discussion on their source and various gut-residing bacteria. Primary techniques used for detection of SCFAs, including gas chromatography, high-performance gas chromatography, nuclear magnetic resonance and capillary electrophoresis are also discussed through this article. This review study also compiles various synthesis pathways of SCFAs from diverse substrates such as sugar, acetone, ethanol and amino acids. The different pathways through which SCFAs enter cells for immune response regulation are also highlighted. A major emphasis is the discussion on diseases associated with SCFA dysregulation, such as anaemia, brain development, CRC, depression, obesity and diabetes. This includes exploring the relationship between SCFA levels across ethnicities and their connection with blood pressure and CRC. In conclusion, this review highlights the critical role of SCFAs in maintaining gut health and their implications in various diseases, emphasizing the need for further research on SCFA detection, synthesis and their potential as diagnostic biomarkers. Future studies of SCFAs will pave the way for the development of novel diagnostic tools and therapeutic strategies for optimizing gut health and preventing diseases associated with SCFA dysregulation.


Asunto(s)
Ácidos Grasos Volátiles , Microbioma Gastrointestinal , Humanos , Ácidos Grasos Volátiles/metabolismo , Animales , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Obesidad/metabolismo
3.
ACS Omega ; 7(41): 36092-36107, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36278104

RESUMEN

Cancer mortality is increasing at an alarming rate across the globe. Albeit, many therapeutics are available commercially, they are not effective and have no cure up to today. Moreover, the knowledge gap in cancer therapy persists, representing a potential blind spot for the innovation of effective anticancer therapeutics. This review presents an update on current advancements in nanopeptide therapeutics. Herein, a detailed exploration of peptide-functionalized nanoparticles for the development of nanotherapeutics was carried out. Different approaches that include self-assembly nanostructures, solid phase peptide synthesis, ligand exchange, chemical reduction, and conjugation methods for assembling peptides for functionalizing nanodrugs are also highlighted. An outlook on biomedical applications is also reviewed. Additionally, a comprehensive discussion on targeted cancer cell therapy and mechanism of action are provided. The present review reflects the functional novelty of nanodrugs to improve stability, accessibility, bioavailability, and specificity toward cancerous cells. Finally, it summarizes the current challenges and future perspectives on the formulation of these nanodrugs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA