Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 11: 1244595, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37781531

RESUMEN

Biofilms are bacterial communities embedded in exopolymeric substances that form on the surfaces of both man-made and natural structures. Biofilm formation in industrial water systems such as cooling towers results in biofouling and biocorrosion and poses a major health concern as well as an economic burden. Traditionally, biofilms in industrial water systems are treated with alternating doses of oxidizing and non-oxidizing biocides, but as resistance increases, higher biocide concentrations are needed. Using chemically synthesized surfactants in combination with biocides is also not a new idea; however, these surfactants are often not biodegradable and lead to accumulation in natural water reservoirs. Biosurfactants have become an essential bioeconomy product for diverse applications; however, reports of their use in combating biofilm-related problems in water management systems is limited to only a few studies. Biosurfactants are powerful anti-biofilm agents and can act as biocides as well as biodispersants. In laboratory settings, the efficacy of biosurfactants as anti-biofilm agents can range between 26% and 99.8%. For example, long-chain rhamnolipids isolated from Burkholderia thailandensis inhibit biofilm formation between 50% and 90%, while a lipopeptide biosurfactant from Bacillus amyloliquefaciens was able to inhibit biofilms up to 96% and 99%. Additionally, biosurfactants can disperse preformed biofilms up to 95.9%. The efficacy of antibiotics can also be increased by between 25% and 50% when combined with biosurfactants, as seen for the V9T14 biosurfactant co-formulated with ampicillin, cefazolin, and tobramycin. In this review, we discuss how biofilms are formed and if biosurfactants, as anti-biofilm agents, have a future in industrial water systems. We then summarize the reported mode of action for biosurfactant molecules and their functionality as biofilm dispersal agents. Finally, we highlight the application of biosurfactants in industrial water systems as anti-fouling and anti-corrosion agents.

2.
J Invertebr Pathol ; 189: 107729, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35124069

RESUMEN

Bacterial symbionts associated with entomopathogenic nematodes (EPNs) play an important role in terms of the insecticidal properties of nematodes in pest control. Galleria mellonella larvae, shortly after being infected with three different strains of Heterorhabditis zealandica, which were isolated from South African soil, changed from pale white to steel grey-blue (blue), bright red, and yellow with a green tint (green), respectively. The genetic relatedness of the bacterial symbionts that were isolated from the three strains of H. zealandica was determined by means of comparing the 16S rRNA, recA, gyrB, dnaN, gltX and infB gene sequences. Subsequently, comparing the concatenated sequences revealed the presence of three distinct Photorhabdus species. The H. zealandica strain SF41, associated with Photorhabdus heterorhabditis, produced 'blue' G. mellonella larvae. The H. zealandica strain MJ2C, associated with Photorhabdus thracensis, yielded 'green' G. mellonella larvae, while the H. zealandica strain LLM associated with Photorhabdus laumondii subsp. laumondii yielded red larvae. The colour changes in G. mellonella larvae were found to have been instigated by a particular Photorhabdus species associated with H. zealandica. The red and 'green' phenotypes of G. mellonella larvae were found to represent new combinations of Heterorhabditis and Photorhabdus. In future studies, the colour of infected G. mellonella larvae needs to be reported as a phenotypic character, as it indicates the different bacterial species associated with the same nematode host, as shown in the case of H. zealandica.


Asunto(s)
Mariposas Nocturnas , Nematodos , Photorhabdus , Animales , Color , Larva/microbiología , Mariposas Nocturnas/genética , Nematodos/genética , Photorhabdus/genética , ARN Ribosómico 16S/genética , Strongyloidea
3.
Front Chem ; 9: 626653, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33859975

RESUMEN

Species from the genus Xenorhabdus, endosymbiotic bacteria of Steinernema nematodes, produce several antibacterial and antifungal compounds, some of which are anti-parasitic. In this study, we report on the effect growth conditions have on the production of antimicrobial compounds produced by Xenorhabdus khoisanae J194. The strain was cultured in aerated and non-aerated broth, respectively, and on solid media. Production of antimicrobial compounds was detected after 24 h of growth in liquid media, with highest levels recorded after 96 h. Highest antimicrobial activity was obtained from cells cultured on solid media. By using ultraperformance liquid chromatography linked to mass spectrometry and HPLC, a plethora of known Xenorhabdus compounds were identified. These compounds are the PAX lipopeptides (PAX 1', PAX 3', PAX 5, and PAX 7E), xenocoumacins and xenoamicins. Differences observed in the MS-MS fractionation patterns collected in this study, when compared to previous studies indicated that this strain produces novel xenoamicins. Three novel antimicrobial compounds, khoicin, xenopep and rhabdin, were identified and structurally characterized based on MS-MS fractionation patterns, amino acid analysis and whole genome analysis. The various compounds produced under the three different conditions indicates that the secondary metabolism of X. khoisanae J194 may be regulated by oxygen, water activity or both. Based on these findings X. khoisanae J194 produce a variety of antimicrobial compounds that may have application in disease control.

4.
Probiotics Antimicrob Proteins ; 11(3): 1009-1014, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-30276719

RESUMEN

Traditionally, methicillin-resistant Staphylococcus aureus (MRSA) is treated with vancomycin, administrated intravenously or applied directly onto infected tissue. The effect of direct (as opposed to systemic) vancomycin treatment on bone formation and remodelling is largely unknown. The minimal inhibitory concentration (MIC) of vancomycin was determined by adding 200 µL of different concentrations (1-20 µg/mL) to actively growing cultures of S. aureus Xen 31 (methicillin-resistant) and S. aureus Xen 36 (methicillin-sensitive), respectively, and recording changes in optical density over 24 h. Bone marrow-derived and proximal femur-derived mesenchymal stem cells (bmMSCs and pfMSCs) from rat femora were exposed to 1 × MIC (5 µg/mL) and 4 × MIC (20 µg/mL) of vancomycin for 7 days. Cell viability was determined by staining with crystal violet and MTT (3-(4,5- di methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), respectively, and osteogenic differentiation by staining with Alizarin Red S. Vancomycin had no effect on the viability of bmMSCs and pfMSCs, even at high levels (20 µg/mL). The osteogenic differentiation of pfMSCs was partially inhibited, while osteogenesis in bmMSCs was not severely affected. The direct application of vancomycin to infected bone tissue, even at excessive levels, may preserve the viability of resident MSC populations.


Asunto(s)
Antibacterianos/farmacología , Células de la Médula Ósea/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Osteogénesis/efectos de los fármacos , Vancomicina/farmacología , Animales , Células de la Médula Ósea/citología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Fémur/citología , Fémur/efectos de los fármacos , Masculino , Células Madre Mesenquimatosas/efectos de los fármacos , Ratas , Ratas Wistar
5.
Probiotics Antimicrob Proteins ; 11(1): 310-316, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-29961212

RESUMEN

Vancomycin is often used to treat infections caused by ß-lactam-resistant bacteria. However, methicillin-resistant strains of Staphylococcus aureus (MRSA) acquired resistance to vancomycin, rendering it less effective in the treatment of serious infections. In the search for novel antibiotics, alternative delivery mechanisms have also been explored. In this study, we report on the encapsulation of vancomycin in PLGA [poly(DL-lactide-co-glycolide)] nanoparticles by electrospraying. The nanoparticles were on average 247 nm in size with small bead formations on the surface. Clusters of various sizes were visible under the SEM (scanning electron microscope). Vancomycin encapsulated in PLGA (VNP) was more effective in inhibiting the growth of S. aureus Xen 31 (MRSA) and S. aureus Xen 36 than un-encapsulated vancomycin. Encapsulated vancomycin had a minimum inhibitory concentration (MIC) of 1 µg/mL against MRSA compared to 5 µg/mL of free vancomycin. At least 70% (w/w) of the vancomycin was encapsulated. Thirty percent of the vancomycin was released within the first 144 h, followed by slow release over 10 days. Vancomycin encapsulated in PLGA nanoparticles may be used to treat serious infections.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Composición de Medicamentos/métodos , Vancomicina/química , Vancomicina/farmacología , Composición de Medicamentos/instrumentación , Pruebas de Sensibilidad Microbiana , Nanopartículas/química , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo
6.
ACS Biomater Sci Eng ; 4(12): 4412-4424, 2018 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-33418834

RESUMEN

Bacteria colonizing the surface of orthopedic implants are responsible for most postoperative periprosthetic joint infections. A possible alternative route for drug delivery is described in this study by utilizing the bulk of the implant itself as a reservoir. Drug release is enabled by manufacturing of integrated permeable structures possessing high porosity through application of selective laser melting technology. The concept was evaluated in two paths, with 400 µm permeable thin walls and with dense reservoirs containing an integrated 950 µm permeable wall. Components were designed and preprocessed as separate parts, allowing for allocation of different settings of laser power and scanning speed. Lowering the energy input into the selective laser melting process to induce intermittent melting of the Ti6Al4V ELI powder produced porous components through which vancomycin was released with differing profiles. Static water contact angle measurements demonstrated a significant effect on the hydrophilicity by permeable wall thickness. Relative porosities of the 400 µm structures were determined with microcomputed tomography analyses. A transition zone of 21.17% porosity was identified where release profiles change from porosity-dependent to near free diffusion. Antimicrobial activity of released vancomycin was confirmed through evaluation against Staphylococcus aureus Xen 36 in two separate agar diffusion assays. The approach is promising for incorporation into the design and manufacturing of next-generation prosthetic implants with controlled release of antibiotics in situ and the subsequent prevention of periprosthetic joint infections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA