Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19551, 2024 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-39174647

RESUMEN

Pesticide contamination and soil degradation present significant challenges in agricultural ecosystems, driving extensive exploration of biochar (BC) and nano-biochar (NBC) as potential solutions. This study examines their effects on soil properties, microbial communities, and the fate of two key pesticides: the hydrophilic methomyl (MET) and the hydrophobic lambda-cyhalothrin (LCT), at different concentrations (1%, 3%, and 5% w w-1) in agricultural soil. Through a carefully designed seven-week black bean pot experiment, the results indicated that the addition of BC/NBC significantly influenced soil dynamics. Soil pH and moisture content (MC) notably increased, accompanied by a general rise in soil organic carbon (SOC) content. However, in BC5/NBC5 treatments, SOC declined after the 2nd or 3rd week. Microbial populations, including total plate count (TPC), phosphate-solubilizing bacteria (PSB), and nitrogen-fixing bacteria (NFB), showed dynamic responses to BC/NBC applications. BC1/NBC1 and BC3/NBC3 applications led to a significant increase in microbial populations, whereas BC5/NBC5 treatments experienced a decline after the initial surge. Furthermore, the removal efficiency of both MET and LCT increased with higher BC/NBC concentrations, with NBC demonstrating greater efficacy than BC. Degradation kinetics, modeled by a first-order equation, revealed that MET degraded faster than LCT. These findings underscore the profound impact of BC/NBC on pesticide dynamics and microbial communities, highlighting their potential to transform sustainable agricultural practices.


Asunto(s)
Carbón Orgánico , Nitrilos , Piretrinas , Microbiología del Suelo , Contaminantes del Suelo , Suelo , Carbón Orgánico/química , Piretrinas/química , Nitrilos/química , Contaminantes del Suelo/química , Suelo/química , Biodegradación Ambiental , Interacciones Hidrofóbicas e Hidrofílicas , Restauración y Remediación Ambiental/métodos
2.
Sci Rep ; 14(1): 13327, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858445

RESUMEN

This study investigates the environmental impact of burning herbicide-contaminated biomass, focusing on atrazine (ATZ) and diuron (DIU) sprayed on rice straw prior to burning. Samples of soil, biomass residues, total suspended particulate (TSP), particulate matter with an aerodynamic diameter ≤ 10 µm (PM10), and aerosols were collected and analyzed. Soil analysis before and after burning contaminated biomass showed significant changes, with 2,4-dichlorophenoxyacetic acid (2,4-D) initially constituting 79.2% and decreasing by 3.3 times post-burning. Atrazine-desethyl, sebuthylazine, and terbuthylazine were detected post-burning. In raw rice straw biomass, terbuthylazine dominated at 80.0%, but burning ATZ-contaminated biomass led to the detection of atrazine-desethyl and notable increases in sebuthylazine and terbuthylazine. Conversely, burning DIU-contaminated biomass resulted in a shift to 2,4-D dominance. Analysis of atmospheric components showed changes in TSP, PM10, and aerosol samples. Linuron in ambient TSP decreased by 1.6 times after burning ATZ-contaminated biomass, while atrazine increased by 2.9 times. Carcinogenic polycyclic aromatic hydrocarbons (PAHs), including benzo[a]anthracene (BaA), benzo[a]pyrene (BaP), and benzo[b]fluoranthene (BbF), increased by approximately 9.9 to 13.9 times after burning ATZ-contaminated biomass. In PM10, BaA and BaP concentrations increased by approximately 11.4 and 19.0 times, respectively, after burning ATZ-contaminated biomass. This study sheds light on the environmental risks posed by burning herbicide-contaminated biomass, emphasizing the need for sustainable agricultural practices and effective waste management. The findings underscore the importance of regulatory measures to mitigate environmental contamination and protect human health.


Asunto(s)
Atrazina , Biomasa , Diurona , Herbicidas , Oryza , Suelo , Atrazina/análisis , Oryza/química , Herbicidas/análisis , Suelo/química , Diurona/análisis , Contaminantes del Suelo/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis
3.
Toxics ; 12(1)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38251041

RESUMEN

This study delved into the impact of open biomass burning on the distribution of pesticide and polycyclic aromatic hydrocarbon (PAH) residues across soil, rice straw, total suspended particulates (TSP), particulate matter with aerodynamic diameter ≤ 10 µm (PM10), and aerosols. A combination of herbicides atrazine (ATZ) and diuron (DIU), fungicide carbendazim (CBD), and insecticide chlorpyriphos (CPF) was applied to biomass before burning. Post-burning, the primary soil pesticide shifted from propyzamide (67.6%) to chlorpyriphos (94.8%). Raw straw biomass retained residues from all pesticide groups, with chlorpyriphos notably dominating (79.7%). Ash residue analysis unveiled significant alterations, with elevated concentrations of chlorpyriphos and terbuthylazine, alongside the emergence of atrazine-desethyl and triadimenol. Pre-burning TSP analysis identified 15 pesticides, with linuron as the primary compound (51.8%). Post-burning, all 21 pesticides were detected, showing significant increases in metobromuron, atrazine-desethyl, and cyanazine concentrations. PM10 composition mirrored TSP but exhibited additional compounds and heightened concentrations, particularly for atrazine, linuron, and cyanazine. Aerosol analysis post-burning indicated a substantial 39.2-fold increase in atrazine concentration, accompanied by the presence of sebuthylazine, formothion, and propyzamide. Carcinogenic PAHs exhibited noteworthy post-burning increases, contributing around 90.1 and 86.9% of all detected PAHs in TSP and PM10, respectively. These insights advance understanding of pesticide dynamics in burning processes, crucial for implementing sustainable agricultural practices and safeguarding environmental and human health.

4.
Toxics ; 11(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37999535

RESUMEN

The escalating utilization of pesticides has led to pronounced environmental contamination, posing a significant threat to agroecosystems. The extensive and persistent global application of these chemicals has been linked to a spectrum of acute and chronic human health concerns. This review paper focuses on the concentrations of airborne pesticides in both indoor and outdoor environments. The collection of diverse pesticide compounds from the atmosphere is examined, with a particular emphasis on active and passive air sampling techniques. Furthermore, a critical evaluation is conducted on the methodologies employed for the extraction and subsequent quantification of airborne pesticides. This analysis takes into consideration the complexities involved in ensuring accurate measurements, highlighting the advancements and limitations of current practices. By synthesizing these aspects, this review aims to foster a more comprehensive and informed comprehension of the intricate dynamics related to the presence and measurement of airborne pesticides. This, in turn, is poised to significantly contribute to the refinement of environmental monitoring strategies and the augmentation of precise risk assessments.

5.
Toxics ; 11(10)2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37888709

RESUMEN

This critical review examines the release of pesticides from agricultural practices into the air, with a focus on volatilization, and the factors influencing their dispersion. The review delves into the effects of airborne pesticides on human health and their contribution to anthropogenic air pollution. It highlights the necessity of interdisciplinary research encompassing science, technology, public policy, and agricultural practices to effectively mitigate the risks associated with pesticide volatilization and spray dispersion. The text acknowledges the need for more research to understand the fate and transport of airborne pesticides, develop innovative application technologies, improve predictive modeling and risk assessment, and adopt sustainable pest management strategies. Robust policies and regulations, supported by education, training, research, and development, are crucial to ensuring the safe and sustainable use of pesticides for human health and the environment. By providing valuable insights, this review aids researchers and practitioners in devising effective and sustainable solutions for safeguarding human health and the environment from the hazards of airborne pesticides.

6.
Environ Res ; 212(Pt C): 113336, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35580668

RESUMEN

Pesticides have been frequently used in agricultural fields. Due to the expeditious utilization of pesticides, their excessive usage has negative impacts on the natural environment and human health. This review discusses the successful implications of nanotechnology-based photocatalysis for the removal of environmental pesticide contaminants. Notably, various nanomaterials, including TiO2, ZnO, Fe2O3, nanoscale zero-valent iron, nanocomposite-based materials, have been proposed and have played a progressively essential role in wastewater treatment. In addition, a detailed review of the crucial reaction condition factors, including water matrix, pH, light source, temperature, flow rate (retention time), initial concentration of pesticides, a dosage of photocatalyst, and radical scavengers, is also highlighted. Additionally, the degradation pathway of pesticide mineralization is also elucidated. Finally, the challenges of technologies and the future of nanotechnology-based photocatalysis toward the photo-degradation of pesticides are thoroughly discussed. It is expected that those innovative extraordinary photocatalysts will significantly enhance the performance of pesticides degradation in the coming years.


Asunto(s)
Plaguicidas , Purificación del Agua , Catálisis , Humanos , Hierro , Nanotecnología , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA