Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 21(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917550

RESUMEN

We present a novel analysis of gas damping in capacitive MEMS transducers that is based on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain an estimate for the geometry dependent gas diffusion time. This combination provides results with minimal computational expense and through freely available software, as well as insight into how the gas damping depends on the transducer geometry in the molecular flow regime. The results can be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental results for both air and helium atmospheres and matches these data to within 15% over a wide range of pressures.

2.
Micromachines (Basel) ; 9(10)2018 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-30424421

RESUMEN

Interface circuits for capacitive MEMS accelerometers are conventionally based on charge-based approaches. A promising alternative to these is provided by frequency-based readout techniques that have some unique advantages as well as a few challenges associated with them. This paper addresses these techniques and presents a derivation of the fundamental resolution limits that are imposed on them by phase noise. Starting with an overview of basic operating principles, associated properties and challenges, the discussions then focus on the fundamental trade-offs between noise, power dissipation and signal bandwidth (BW) for the LC-oscillator-based frequency readout and for the conventional charge-based switched-capacitor (SC) readout. Closed-form analytical formulas are derived to facilitate a fair comparison between the two approaches. Benchmarking results indicate that, with the same bandwidth requirement, charge-based readout circuits are more suitable when optimizing for noise performance, while there is still some room for frequency-based techniques when optimizing for power consumption, especially when flicker phase noise can be mitigated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA