Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(29): e2407330121, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38980901

RESUMEN

Kinesin-1 ensembles maneuver vesicular cargoes through the three-dimensional (3D) intracellular microtubule (MT) network. To define how such cargoes navigate MT intersections, we first determined how many kinesins from an ensemble on a lipid-based cargo simultaneously engage a MT, and then determined the directional outcomes (straight, turn, terminate) for liposome cargoes at perpendicular MT intersections. Run lengths of 350-nm diameter liposomes decorated with up to 20, constitutively active, truncated kinesin-1 KIF5B (K543) were longer than single motor transported cargo, suggesting multiple motor engagement. However, detachment forces of lipid-coated beads with ~20 kinesins, measured using an optical trap, showed no more than three simultaneously engaged motors, with a single engaged kinesin predominating, indicating anticooperative MT binding. At two-dimensional (2D) and 3D in vitro MT intersections, liposomes frequently paused (~2 s), suggesting kinesins simultaneously bind both MTs and engage in a tug-of-war. Liposomes showed no directional outcome bias in 2D (1.1 straight:turn ratio) but preferentially went straight (1.8 straight:turn ratio) in 3D intersections. To explain these data, we developed a mathematical model of liposome transport incorporating the known mechanochemistry of kinesins, which diffuse on the liposome surface, and have stiff tails in both compression and extension that impact how motors engage the intersecting MTs. Our model predicts the ~3 engaged motor limit observed in the optical trap and the bias toward going straight in 3D intersections. The striking similarity of these results to our previous study of liposome transport by myosin Va suggests a "universal" mechanism by which cargoes navigate 3D intersections.


Asunto(s)
Cinesinas , Liposomas , Microtúbulos , Cinesinas/metabolismo , Cinesinas/química , Liposomas/química , Liposomas/metabolismo , Microtúbulos/metabolismo , Transporte Biológico , Animales , Proteínas Motoras Moleculares/metabolismo , Proteínas Motoras Moleculares/química , Pinzas Ópticas
2.
bioRxiv ; 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38076816

RESUMEN

Kinesin-1 ensembles maneuver vesicular cargoes through intersections in the 3-dimensional (3D) intracellular microtubule (MT) network. To characterize directional outcomes (straight, turn, terminate) at MT intersections, we challenge 350 nm fluid-like liposomes transported by ~10 constitutively active, truncated kinesin-1 KIF5B (K543) with perpendicular 2-dimensional (2D) and 3D intersections in vitro. Liposomes frequently pause at 2D and 3D intersections (~2s), suggesting that motor teams can simultaneously engage each MT and undergo a tug-of-war. Once resolved, the directional outcomes at 2D MT intersections have a straight to turn ratio of 1.1; whereas at 3D MT intersections, liposomes more frequently go straight (straight to turn ratio of 1.8), highlighting that spatial relationships at intersections bias directional outcomes. Using 3D super-resolution microscopy (STORM), we define the gap between intersecting MTs and the liposome azimuthal approach angle heading into the intersection. We develop an in silico model in which kinesin-1 motors diffuse on the liposome surface, simultaneously engage the intersecting MTs, generate forces and detach from MTs governed by the motors' mechanochemical cycle, and undergo a tug-of-war with the winning team determining the directional outcome in 3D. The model predicts that 1-3 motors typically engage the MT, consistent with optical trapping measurements. Modeled liposomes also predominantly go straight through 3D intersections over a range of intersection gaps and liposome approach angles, even when obstructed by the crossing MT. Our observations and modeling offer mechanistic insights into how cells might tune the MT cytoskeleton, cargo, and motors to modulate cargo transport.

3.
Nanoscale ; 14(34): 12463-12475, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-35980233

RESUMEN

Molecular motors often work in teams to move a cellular cargo. Yet measuring the forces exerted by each motor is challenging. Using a sensor made with denatured ssDNA and multi-color fluorescence, we measured picoNewtons of forces and nanometer distances exerted by individual constrained kinesin-1 motors acting together while driving a common microtubule in vitro. We find that kinesins primarily exerted less than 1 pN force, even while the microtubule is bypassing artificial obstacles of 20-100 nanometer size. Occasionally, individual forces increase upon encountering obstacles, although at other times they do not, with the cargo continuing in a directional manner. Our high-throughput technique, which can measure forces by many motors simultaneously, is expected to be useful for many different types of molecular motors.


Asunto(s)
Cinesinas , Microtúbulos , Transporte Biológico , Fluorescencia , Microtúbulos/metabolismo
4.
Elife ; 82019 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-31670658

RESUMEN

How cargoes move within a crowded cell-over long distances and at speeds nearly the same as when moving on unimpeded pathway-has long been mysterious. Through an in vitro force-gliding assay, which involves measuring nanometer displacement and piconewtons of force, we show that multiple mammalian kinesin-1 (from 2 to 8) communicate in a team by inducing tension (up to 4 pN) on the cargo. Kinesins adopt two distinct states, with one-third slowing down the microtubule and two-thirds speeding it up. Resisting kinesins tend to come off more rapidly than, and speed up when pulled by driving kinesins, implying an asymmetric tug-of-war. Furthermore, kinesins dynamically interact to overcome roadblocks, occasionally combining their forces. Consequently, multiple kinesins acting as a team may play a significant role in facilitating smooth cargo motion in a dense environment. This is one of few cases in which single molecule behavior can be connected to ensemble behavior of multiple motors.


The inside of a cell is a crowded space, full of proteins and other molecules. Yet, the molecular motors that transport some of those molecules within the cell move at the same speed as they would in pure water ­ about one micrometer per second. How the molecular motors could achieve such speeds in crowded cells was unclear. Nevertheless, Tjioe et al. suspected that the answer might be related to how multiple motors work together. Molecular motors move by walking along filaments inside the cell and pulling their cargo from one location to another. Other molecules that bind to the filaments should, in theory, act like "roadblocks" and impede the movement of the cargo. Tjioe et al. studied a motor protein called kinesin, which walks on filaments called microtubules. But instead of looking at these motors moving along microtubules inside a cell, Tjioe et al. used a simpler system where the cell was eliminated, and all parts were purified. Specifically, Tjioe et al. tethered purified motors to a piece of glass and then observed them under an extremely accurate microscope as they moved free-floating, fluorescently labelled microtubules. The microtubules, in this scenario, were acting like cargoes, where many kinesins could bind. Each kinesin motor also had a small chemical tag that could emit light. By following the movement of the lights, it was possible to calculate what each kinesin was doing and how the cargo moved. When more than one kinesin molecule was acting, the tension and speed of one kinesin affected the movement of the others. In any group of kinesins, about two-thirds of kinesin pulled the cargo, and unexpectedly, about one-third tended to resist and slow the cargo. These latter kinesins were moved along with the group without actually driving the cargo. These resisting kinesins did come off more rapidly than the driving kinesins, meaning the cargo should be able to quickly bypass roadblocks. This would help to keep the whole group travelling in the right direction at a steady pace.


Asunto(s)
Cinesinas/metabolismo , Animales , Transporte Biológico , Fenómenos Biomecánicos , Ratones , Microtúbulos/metabolismo
5.
Nat Commun ; 10(1): 3286, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31337750

RESUMEN

Plasmodium parasites are obligate intracellular protozoa and causative agents of malaria, responsible for half a million deaths each year. The lifecycle progression of the parasite is reliant on cell motility, a process driven by myosin A, an unconventional single-headed class XIV molecular motor. Here we demonstrate that myosin A from Plasmodium falciparum (PfMyoA) is critical for red blood cell invasion. Further, using a combination of X-ray crystallography, kinetics, and in vitro motility assays, we elucidate the non-canonical interactions that drive this motor's function. We show that PfMyoA motor properties are tuned by heavy chain phosphorylation (Ser19), with unphosphorylated PfMyoA exhibiting enhanced ensemble force generation at the expense of speed. Regulated phosphorylation may therefore optimize PfMyoA for enhanced force generation during parasite invasion or for fast motility during dissemination. The three PfMyoA crystallographic structures presented here provide a blueprint for discovery of specific inhibitors designed to prevent parasite infection.


Asunto(s)
Miosina Tipo IIA no Muscular/fisiología , Plasmodium falciparum/patogenicidad , Proteínas Protozoarias/fisiología , Movimiento Celular , Cristalografía por Rayos X , Eritrocitos/parasitología , Miosina Tipo IIA no Muscular/química , Miosina Tipo IIA no Muscular/metabolismo , Fosforilación , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
6.
J Biol Chem ; 294(26): 10160-10171, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085585

RESUMEN

Microtubule-associated proteins (MAPs) regulate microtubule polymerization, dynamics, and organization. In addition, MAPs alter the motility of kinesin and dynein to control trafficking along microtubules. MAP7 (ensconsin, E-MAP-115) is a ubiquitous MAP that organizes the microtubule cytoskeleton in mitosis and neuronal branching. MAP7 also recruits kinesin-1 to microtubules. To understand how the activation of kinesin-1 by MAP7 regulates the motility of organelles transported by ensembles of kinesin and dynein, we isolated organelles and reconstituted their motility in vitro In the absence of MAP7, isolated phagosomes exhibit approximately equal fractions of plus- and minus-end-directed motility along microtubules. MAP7 causes a pronounced shift in motility; phagosomes move toward the plus-end ∼80% of the time, and kinesin teams generate more force. To dissect MAP7-mediated regulation of kinesin-driven transport, we examined its effects on the motility and force generation of single and teams of full-length kinesin-1 motors. We find that MAP7 does not alter the force exerted by a single kinesin-1 motor, but instead increases its binding rate to the microtubule. For ensembles of kinesin, a greater number of kinesin motors are simultaneously engaged and generating force to preferentially target organelles toward the microtubule plus-end.


Asunto(s)
Movimiento Celular , Cinesinas , Macrófagos , Proteínas Asociadas a Microtúbulos , Microtúbulos , Fagosomas , Animales , Ratones , Transporte Biológico , Dineínas , Cinesinas/metabolismo , Macrófagos/citología , Macrófagos/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Modelos Teóricos , Fagosomas/metabolismo , Transporte de Proteínas
7.
Elife ; 72018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29944116

RESUMEN

We investigated the role of full-length Drosophila Bicaudal D (BicD) binding partners in dynein-dynactin activation for mRNA transport on microtubules. Full-length BicD robustly activated dynein-dynactin motility only when both the mRNA binding protein Egalitarian (Egl) and K10 mRNA cargo were present, and electron microscopy showed that both Egl and mRNA were needed to disrupt a looped, auto-inhibited BicD conformation. BicD can recruit two dimeric dyneins, resulting in faster speeds and longer runs than with one dynein. Moving complexes predominantly contained two Egl molecules and one K10 mRNA. This mRNA-bound configuration makes Egl bivalent, likely enhancing its avidity for BicD and thus its ability to disrupt BicD auto-inhibition. Consistent with this idea, artificially dimerized Egl activates dynein-dynactin-BicD in the absence of mRNA. The ability of mRNA cargo to orchestrate the activation of the mRNP (messenger ribonucleotide protein) complex is an elegant way to ensure that only cargo-bound motors are motile.


Asunto(s)
Movimiento Celular/genética , Proteínas de Drosophila/genética , Dineínas/genética , Complejo Dinactina/genética , Complejos Multiproteicos , Unión Proteica/genética , Multimerización de Proteína , Transporte de Proteínas , Transporte de ARN/genética , ARN Mensajero/genética , Ribonucleoproteínas/genética
8.
Bioconjug Chem ; 29(7): 2278-2286, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29932650

RESUMEN

We develop magnetic cytoskeleton affinity (MiCA) purification, which allows for rapid isolation of molecular motors conjugated to large multivalent quantum dots, in miniscule quantities, which is especially useful for single-molecule applications. When purifying labeled molecular motors, an excess of fluorophores or labels is usually used. However, large labels tend to sediment during the centrifugation step of microtubule affinity purification, a traditionally powerful technique for motor purification. This is solved with MiCA, and purification time is cut from 2 h to 20 min, a significant time-savings when it needs to be done daily. For kinesin, MiCA works with as little as 0.6 µg protein, with yield of ∼27%, compared to 41% with traditional purification. We show the utility of MiCA purification in a force-gliding assay with kinesin, allowing, for the first time, simultaneous determination of whether the force from each motor in a multiple-motor system drives or hinders microtubule movement. Furthermore, we demonstrate rapid purification of just 30 ng dynein-dynactin-BICD2N-QD (DDB-QD), ordinarily a difficult protein-complex to purify.


Asunto(s)
Citoesqueleto/química , Microtúbulos/química , Proteínas Motoras Moleculares/química , Puntos Cuánticos/química , Animales , Cromatografía de Afinidad , Complejo Dinactina/aislamiento & purificación , Dineínas/aislamiento & purificación , Humanos , Proteínas Motoras Moleculares/aislamiento & purificación , Coloración y Etiquetado , Factores de Tiempo
9.
J Biol Chem ; 292(47): 19290-19303, 2017 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-28978649

RESUMEN

Motility of the apicomplexan malaria parasite Plasmodium falciparum is enabled by a multiprotein glideosome complex, whose core is the class XIV myosin motor, PfMyoA, and a divergent Plasmodium actin (PfAct1). Parasite motility is necessary for host-cell invasion and virulence, but studying its molecular basis has been hampered by unavailability of sufficient amounts of PfMyoA. Here, we expressed milligram quantities of functional full-length PfMyoA with the baculovirus/Sf9 cell expression system, which required a UCS (UNC-45/CRO1/She4p) family myosin chaperone from Plasmodium spp. In addition to the known light chain myosin tail interacting protein (MTIP), we identified an essential light chain (PfELC) that co-purified with PfMyoA isolated from parasite lysates. The speed at which PfMyoA moved actin was fastest with both light chains bound, consistent with the light chain-binding domain acting as a lever arm to amplify nucleotide-dependent motions in the motor domain. Surprisingly, PfELC binding to the heavy chain required that MTIP also be bound to the heavy chain, unlike MTIP that bound the heavy chain independently of PfELC. Neither the presence of calcium nor deletion of the MTIP N-terminal extension changed the speed of actin movement. Of note, PfMyoA moved filaments formed from Sf9 cell-expressed PfAct1 at the same speed as skeletal muscle actin. Duty ratio estimates suggested that as few as nine motors can power actin movement at maximal speed, a feature that may be necessitated by the dynamic nature of Plasmodium actin filaments in the parasite. In summary, we have reconstituted the essential core of the glideosome, enabling drug targeting of both of its core components to inhibit parasite invasion.


Asunto(s)
Actinas/metabolismo , Complejos Multiproteicos/metabolismo , Músculo Esquelético/metabolismo , Miosina Tipo IIA no Muscular/metabolismo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Secuencia de Aminoácidos , Animales , Movimiento Celular , Modelos Moleculares , Chaperonas Moleculares , Conformación Proteica , Homología de Secuencia
10.
Proc Natl Acad Sci U S A ; 114(35): E7236-E7244, 2017 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-28808035

RESUMEN

Studies in fission yeast Schizosaccharomyces pombe have provided the basis for the most advanced models of the dynamics of the cytokinetic contractile ring. Myo2, a class-II myosin, is the major source of tension in the contractile ring, but how Myo2 is anchored and regulated to produce force is poorly understood. To enable more detailed biochemical/biophysical studies, Myo2 was expressed in the baculovirus/Sf9 insect cell system with its two native light chains, Rlc1 and Cdc4. Milligram yields of soluble, unphosphorylated Myo2 were obtained that exhibited high actin-activated ATPase activity and in vitro actin filament motility. The fission yeast specific chaperone Rng3 was thus not required for expression or activity. In contrast to nonmuscle myosins from animal cells that require phosphorylation of the regulatory light chain for activation, phosphorylation of Rlc1 markedly reduced the affinity of Myo2 for actin. Another unusual feature of Myo2 was that, unlike class-II myosins, which generally form bipolar filamentous structures, Myo2 showed no inclination to self-assemble at approximately physiological salt concentrations, as analyzed by sedimentation velocity ultracentrifugation. This lack of assembly supports the hypothesis that clusters of Myo2 depend on interactions at the cell cortex in structural units called nodes for force production during cytokinesis.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo II/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , División Celular , Proteínas Contráctiles , Citocinesis/fisiología , Proteínas del Citoesqueleto/metabolismo , Regulación hacia Abajo , Proteínas de Microfilamentos/metabolismo , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/fisiología , Miosina Tipo II/genética , Miosina Tipo II/fisiología , Miosina Tipo V/metabolismo , Miosinas/metabolismo , Fosforilación , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiología
11.
J Cell Biol ; 214(2): 167-79, 2016 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-27432898

RESUMEN

Myo51, a class V myosin in fission yeast, localizes to and assists in the assembly of the contractile ring, a conserved eukaryotic actomyosin structure that facilitates cytokinesis. Rng8 and Rng9 are binding partners that dictate the cellular localization and function of Myo51. Myo51 was expressed in insect cells in the presence or absence of Rng8/9. Surprisingly, electron microscopy of negatively stained images and hydrodynamic measurements showed that Myo51 is single headed, unlike most class V myosins. When Myo51-Rng8/9 was bound to actin-tropomyosin, two attachment sites were observed: the typical ATP-dependent motor domain attachment and a novel ATP-independent binding of the tail mediated by Rng8/9. A modified motility assay showed that this additional binding site anchors Myo51-Rng8/9 so that it can cross-link and slide actin-tropomyosin filaments relative to one another, functions that may explain the role of this motor in contractile ring assembly.


Asunto(s)
Actinas/metabolismo , Miosinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Tropomiosina/metabolismo , Adenosina Trifosfato/metabolismo , Sitios de Unión , Proteínas Inmovilizadas/metabolismo , Microscopía Fluorescente , Modelos Biológicos , Miosinas/química , Miosinas/ultraestructura , Coloración Negativa , Unión Proteica , Dominios Proteicos , Transporte de Proteínas , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/ultraestructura , Imagen Individual de Molécula , Ultracentrifugación
12.
Proc Natl Acad Sci U S A ; 112(31): E4168-77, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26153420

RESUMEN

Point mutations in vascular smooth muscle α-actin (SM α-actin), encoded by the gene ACTA2, are the most prevalent cause of familial thoracic aortic aneurysms and dissections (TAAD). Here, we provide the first molecular characterization, to our knowledge, of the effect of the R258C mutation in SM α-actin, expressed with the baculovirus system. Smooth muscles are unique in that force generation requires both interaction of stable actin filaments with myosin and polymerization of actin in the subcortical region. Both aspects of R258C function therefore need investigation. Total internal reflection fluorescence (TIRF) microscopy was used to quantify the growth of single actin filaments as a function of time. R258C filaments are less stable than WT and more susceptible to severing by cofilin. Smooth muscle tropomyosin offers little protection from cofilin cleavage, unlike its effect on WT actin. Unexpectedly, profilin binds tighter to the R258C monomer, which will increase the pool of globular actin (G-actin). In an in vitro motility assay, smooth muscle myosin moves R258C filaments more slowly than WT, and the slowing is exacerbated by smooth muscle tropomyosin. Under loaded conditions, small ensembles of myosin are unable to produce force on R258C actin-tropomyosin filaments, suggesting that tropomyosin occupies an inhibitory position on actin. Many of the observed defects cannot be explained by a direct interaction with the mutated residue, and thus the mutation allosterically affects multiple regions of the monomer. Our results align with the hypothesis that defective contractile function contributes to the pathogenesis of TAAD.


Asunto(s)
Actinas/genética , Mutación/genética , Miosinas/metabolismo , Enfermedades Vasculares/genética , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actomiosina/metabolismo , Animales , Pollos , Desoxirribonucleasas/metabolismo , Electroforesis en Gel de Poliacrilamida , Gelsolina/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Microscopía Fluorescente , Modelos Biológicos , Modelos Moleculares , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Proteínas Mutantes/metabolismo , Polimerizacion , Profilinas/metabolismo , Unión Proteica , Estabilidad Proteica , Células Sf9 , Tropomiosina/metabolismo
13.
J Biol Chem ; 289(44): 30832-30841, 2014 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-25231988

RESUMEN

Many diverse myosin classes can be expressed using the baculovirus/Sf9 insect cell expression system, whereas others have been recalcitrant. We hypothesized that most myosins utilize Sf9 cell chaperones, but others require an organism-specific co-chaperone. TgMyoA, a class XIVa myosin from the parasite Toxoplasma gondii, is required for the parasite to efficiently move and invade host cells. The T. gondii genome contains one UCS family myosin co-chaperone (TgUNC). TgMyoA expressed in Sf9 cells was soluble and functional only if the heavy and light chain(s) were co-expressed with TgUNC. The tetratricopeptide repeat domain of TgUNC was not essential to obtain functional myosin, implying that there are other mechanisms to recruit Hsp90. Purified TgMyoA heavy chain complexed with its regulatory light chain (TgMLC1) moved actin in a motility assay at a speed of ∼1.5 µm/s. When a putative essential light chain (TgELC1) was also bound, TgMyoA moved actin at more than twice that speed (∼3.4 µm/s). This result implies that two light chains bind to and stabilize the lever arm, the domain that amplifies small motions at the active site into the larger motions that propel actin at fast speeds. Our results show that the TgMyoA domain structure is more similar to other myosins than previously appreciated and provide a molecular explanation for how it moves actin at fast speeds. The ability to express milligram quantities of a class XIV myosin in a heterologous system paves the way for detailed structure-function analysis of TgMyoA and identification of small molecule inhibitors.


Asunto(s)
Chaperonas Moleculares/biosíntesis , Cadenas Pesadas de Miosina/química , Cadenas Ligeras de Miosina/fisiología , Proteínas Protozoarias/química , Toxoplasma/metabolismo , Actinas/química , Animales , Transporte Biológico , Calcio/química , Chaperonas Moleculares/química , Cadenas Pesadas de Miosina/biosíntesis , Cadenas Ligeras de Miosina/química , Unión Proteica , Proteínas Protozoarias/fisiología , Células Sf9 , Solubilidad , Spodoptera
14.
Proc Natl Acad Sci U S A ; 111(3): E334-43, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24402168

RESUMEN

Characterizing the collective functions of cytoskeletal motors is critical to understanding mechanisms that regulate the internal organization of eukaryotic cells as well as the roles various transport defects play in human diseases. Though in vitro assays using synthetic motor complexes have generated important insights, dissecting collective motor functions within living cells still remains challenging. Here, we show that the protein heterodimerization switches FKBP-rapalog-FRB can be harnessed in engineered COS-7 cells to compare the collective responses of kinesin-1 and myosinVa motors to changes in motor number and cargo size. The dependence of cargo velocities, travel distances, and position noise on these parameters suggests that multiple myosinVa motors can cooperate more productively than collections of kinesins in COS-7 cells. In contrast to observations with kinesin-1 motors, the velocities and run lengths of peroxisomes driven by multiple myosinVa motors are found to increase with increasing motor density, but are relatively insensitive to the higher loads associated with transporting large peroxisomes in the viscoelastic environment of the COS-7 cell cytoplasm. Moreover, these distinctions appear to be derived from the different sensitivities of kinesin-1 and myosinVa velocities and detachment rates to forces at the single-motor level. The collective behaviors of certain processive motors, like myosinVa, may therefore be more readily tunable and have more substantial roles in intracellular transport regulatory mechanisms compared with those of other cytoskeletal motors.


Asunto(s)
Cinesinas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Cadenas Pesadas de Miosina/metabolismo , Animales , Proteínas Bacterianas/química , Transporte Biológico , Células COS , Chlorocebus aethiops , Citoesqueleto/metabolismo , Doxiciclina/química , Elasticidad , Cinesinas/química , Proteínas Luminiscentes/química , Lisosomas/metabolismo , Microtúbulos/metabolismo , Peroxisomas/metabolismo , Reología , Biología Sintética , Viscosidad
15.
Mol Biol Cell ; 25(1): 66-75, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24196839

RESUMEN

A hallmark of class-V myosins is their processivity--the ability to take multiple steps along actin filaments without dissociating. Our previous work suggested, however, that the fission yeast myosin-V (Myo52p) is a nonprocessive motor whose activity is enhanced by tropomyosin (Cdc8p). Here we investigate the molecular mechanism and physiological relevance of tropomyosin-mediated regulation of Myo52p transport, using a combination of in vitro and in vivo approaches. Single molecules of Myo52p, visualized by total internal reflection fluorescence microscopy, moved processively only when Cdc8p was present on actin filaments. Small ensembles of Myo52p bound to a quantum dot, mimicking the number of motors bound to physiological cargo, also required Cdc8p for continuous motion. Although a truncated form of Myo52p that lacked a cargo-binding domain failed to support function in vivo, it still underwent actin-dependent movement to polarized growth sites. This result suggests that truncated Myo52p lacking cargo, or single molecules of wild-type Myo52p with small cargoes, can undergo processive movement along actin-Cdc8p cables in vivo. Our findings outline a mechanism by which tropomyosin facilitates sorting of transport to specific actin tracks within the cell by switching on myosin processivity.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Miosinas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Adenosina Trifosfato/metabolismo , Transporte Biológico Activo , Microscopía Fluorescente , Dominios y Motivos de Interacción de Proteínas , Imagen de Lapso de Tiempo
16.
J Biol Chem ; 288(45): 32612-32621, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24072715

RESUMEN

Disruptions in microtubule motor transport are associated with a variety of neurodegenerative diseases. Post-translational modification of the cargo-binding domain of the light and heavy chains of kinesin has been shown to regulate transport, but less is known about how modifications of the motor domain affect transport. Here we report on the effects of phosphorylation of a mammalian kinesin motor domain by the kinase JNK3 at a conserved serine residue (Ser-175 in the B isoform and Ser-176 in the A and C isoforms). Phosphorylation of this residue has been implicated in Huntington disease, but the mechanism by which Ser-175 phosphorylation affects transport is unclear. The ATPase, microtubule-binding affinity, and processivity are unchanged between a phosphomimetic S175D and a nonphosphorylatable S175A construct. However, we find that application of force differentiates between the two. Placement of negative charge at Ser-175, through phosphorylation or mutation, leads to a lower stall force and decreased velocity under a load of 1 piconewton or greater. Sedimentation velocity experiments also show that addition of a negative charge at Ser-175 favors the autoinhibited conformation of kinesin. These observations imply that when cargo is transported by both dynein and phosphorylated kinesin, a common occurrence in the cell, there may be a bias that favors motion toward the minus-end of microtubules. Such bias could be used to tune transport in healthy cells when properly regulated but contribute to a disease state when misregulated.


Asunto(s)
Cinesinas/química , Sustitución de Aminoácidos , Animales , Bovinos , Dineínas/química , Dineínas/genética , Dineínas/metabolismo , Humanos , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Cinesinas/genética , Cinesinas/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Mutación Missense , Fosforilación/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Células Sf9 , Spodoptera
17.
Nat Struct Mol Biol ; 20(8): 952-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23812374

RESUMEN

Molecular motors are instrumental in mRNA localization, which provides spatial and temporal control of protein expression and function. To obtain mechanistic insight into how a class V myosin transports mRNA, we performed single-molecule in vitro assays on messenger ribonucleoprotein (mRNP) complexes reconstituted from purified proteins and a localizing mRNA found in budding yeast. mRNA is required to form a stable, processive transport complex on actin--an elegant mechanism to ensure that only cargo-bound motors are motile. Increasing the number of localizing elements ('zip codes') on the mRNA, or configuring the track to resemble actin cables, enhanced run length and event frequency. In multi-zip-code mRNPs, motor separation distance varied during a run, thus showing the dynamic nature of the transport complex. Building the complexity of single-molecule in vitro assays is necessary to understand how these complexes function within cells.


Asunto(s)
Proteínas Motoras Moleculares/fisiología , Transporte de ARN/fisiología , ARN Mensajero/fisiología , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/fisiología , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Modelos Moleculares , Cadenas Pesadas de Miosina/genética , Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
18.
J Biol Chem ; 287(33): 27753-61, 2012 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-22718762

RESUMEN

Characterization of the collective behaviors of different classes of processive motor proteins has become increasingly important to understand various intracellular trafficking and transport processes. This work examines the dynamics of structurally-defined motor complexes containing two myosin Va (myoVa) motors that are linked together via a molecular scaffold formed from a single duplex of DNA. Dynamic changes in the filament-bound configuration of these complexes due to motor binding, stepping, and detachment were monitored by tracking the positions of different color quantum dots that report the position of one head of each myoVa motor on actin. As in studies of multiple kinesins, the run lengths produced by two myosins are only slightly larger than those of single motor molecules. This suggests that internal strain within the complexes, due to asynchronous motor stepping and the resultant stretching of motor linkages, yields net negative cooperative behaviors. In contrast to multiple kinesins, multiple myosin complexes move with appreciably lower velocities than a single-myosin molecule. Although similar trends are predicted by a discrete state stochastic model of collective motor dynamics, these analyses also suggest that multiple myosin velocities and run lengths depend on both the compliance and the effective size of their cargo. Moreover, it is proposed that this unique collective behavior occurs because the large step size and relatively small stalling force of myoVa leads to a high sensitivity of motor stepping rates to strain.


Asunto(s)
Actinas/química , ADN/química , Miosina Tipo V/química , Actinas/genética , Actinas/metabolismo , Animales , ADN/genética , ADN/metabolismo , Elasticidad , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Curr Biol ; 22(15): 1410-6, 2012 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-22704989

RESUMEN

Myosin V is an actin-based motor protein involved in intracellular cargo transport [1]. Given this physiological role, it was widely assumed that all class V myosins are processive, able to take multiple steps along actin filaments without dissociating. This notion was challenged when several class V myosins were characterized as nonprocessive in vitro, including Myo2p, the essential class V myosin from S. cerevisiae [2-6]. Myo2p moves cargo including secretory vesicles and other organelles for several microns along actin cables in vivo. This demonstrated cargo transporter must therefore either operate in small ensembles or behave processively in the cellular context. Here we show that Myo2p moves processively in vitro as a single motor when it walks on an actin track that more closely resembles the actin cables found in vivo. The key to processivity is tropomyosin: Myo2p is not processive on bare actin but highly processive on actin-tropomyosin. The major yeast tropomyosin isoform, Tpm1p, supports the most robust processivity. Tropomyosin slows the rate of MgADP release, thus increasing the time the motor spends strongly attached to actin. This is the first example of tropomyosin switching a motor from nonprocessive to processive motion on actin.


Asunto(s)
Cadenas Pesadas de Miosina/fisiología , Miosina Tipo V/fisiología , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Tropomiosina/fisiología , Actinas/fisiología , Isoformas de Proteínas
20.
J Cell Biol ; 195(4): 631-41, 2011 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-22084309

RESUMEN

Myo4p, one of two class V myosins in budding yeast, continuously transports messenger RNA (mRNA) cargo in the cell but is nonprocessive when characterized in vitro. The adapter protein She3p tightly binds to the Myo4p rod, forming a single-headed motor complex. In this paper, we show that two Myo4p-She3p motors are recruited by the tetrameric mRNA-binding protein She2p to form a processive double-headed complex. The binding site for She3p was mapped to a single α helix that protrudes at right angles from She2p. Processive runs of several micrometers on yeast actin-tropomyosin filaments were observed only in the presence of She2p, and, thus, motor activity is regulated by cargo binding. While moving processively, each head steps ~72 nm in a hand-over-hand motion. Coupling two high-duty cycle monomeric motors via a common cargo-binding adapter protein creates a complex with transport properties comparable with a single dimeric processive motor such as vertebrate myosin Va.


Asunto(s)
Cadenas Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Modelos Moleculares , Cadenas Pesadas de Miosina/química , Miosina Tipo V/química , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA