Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 7: 1365, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27683573

RESUMEN

While a functional quorum sensing system has been identified in the acidophilic chemolithoautotrophic Acidithiobacillus ferrooxidans ATCC 23270(T) and shown to modulate cell adhesion to solid substrates, nothing is known about the genes it regulates. To address the question of how quorum sensing controls biofilm formation in A. ferrooxidans (T), the transcriptome of this organism in conditions in which quorum sensing response is stimulated by a synthetic superagonist AHL (N-acyl homoserine lactones) analog has been studied. First, the effect on biofilm formation of a synthetic AHL tetrazolic analog, tetrazole 9c, known for its agonistic QS activity, was assessed by fluorescence and electron microscopy. A fast adherence of A. ferrooxidans (T) cells on sulfur coupons was observed. Then, tetrazole 9c was used in DNA microarray experiments that allowed the identification of genes regulated by quorum sensing signaling, and more particularly, those involved in early biofilm formation. Interestingly, afeI gene, encoding the AHL synthase, but not the A. ferrooxidans quorum sensing transcriptional regulator AfeR encoding gene, was shown to be regulated by quorum sensing. Data indicated that quorum sensing network represents at least 4.5% (141 genes) of the ATCC 23270(T) genome of which 42.5% (60 genes) are related to biofilm formation. Finally, AfeR was shown to bind specifically to the regulatory region of the afeI gene at the level of the palindromic sequence predicted to be the AfeR binding site. Our results give new insights on the response of A. ferrooxidans to quorum sensing and on biofilm biogenesis.

2.
Appl Environ Microbiol ; 79(7): 2172-81, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23354702

RESUMEN

Gene transcription (microarrays) and protein levels (proteomics) were compared in cultures of the acidophilic chemolithotroph Acidithiobacillus ferrooxidans grown on elemental sulfur as the electron donor under aerobic and anaerobic conditions, using either molecular oxygen or ferric iron as the electron acceptor, respectively. No evidence supporting the role of either tetrathionate hydrolase or arsenic reductase in mediating the transfer of electrons to ferric iron (as suggested by previous studies) was obtained. In addition, no novel ferric iron reductase was identified. However, data suggested that sulfur was disproportionated under anaerobic conditions, forming hydrogen sulfide via sulfur reductase and sulfate via heterodisulfide reductase and ATP sulfurylase. Supporting physiological evidence for H2S production came from the observation that soluble Cu(2+) included in anaerobically incubated cultures was precipitated (seemingly as CuS). Since H(2)S reduces ferric iron to ferrous in acidic medium, its production under anaerobic conditions indicates that anaerobic iron reduction is mediated, at least in part, by an indirect mechanism. Evidence was obtained for an alternative model implicating the transfer of electrons from S(0) to Fe(3+) via a respiratory chain that includes a bc(1) complex and a cytochrome c. Central carbon pathways were upregulated under aerobic conditions, correlating with higher growth rates, while many Calvin-Benson-Bassham cycle components were upregulated during anaerobic growth, probably as a result of more limited access to carbon dioxide. These results are important for understanding the role of A. ferrooxidans in environmental biogeochemical metal cycling and in industrial bioleaching operations.


Asunto(s)
Acidithiobacillus/metabolismo , Hierro/metabolismo , Azufre/metabolismo , Anaerobiosis , Perfilación de la Expresión Génica , Sulfuro de Hidrógeno/metabolismo , Redes y Vías Metabólicas/genética , Oxidación-Reducción , Proteoma , Transcriptoma
3.
BMC Genomics ; 10: 394, 2009 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-19703284

RESUMEN

BACKGROUND: Acidithiobacillus ferrooxidans gains energy from the oxidation of ferrous iron and various reduced inorganic sulfur compounds at very acidic pH. Although an initial model for the electron pathways involved in iron oxidation has been developed, much less is known about the sulfur oxidation in this microorganism. In addition, what has been reported for both iron and sulfur oxidation has been derived from different A. ferrooxidans strains, some of which have not been phylogenetically characterized and some have been shown to be mixed cultures. It is necessary to provide models of iron and sulfur oxidation pathways within one strain of A. ferrooxidans in order to comprehend the full metabolic potential of the pangenome of the genus. RESULTS: Bioinformatic-based metabolic reconstruction supported by microarray transcript profiling and quantitative RT-PCR analysis predicts the involvement of a number of novel genes involved in iron and sulfur oxidation in A. ferrooxidans ATCC23270. These include for iron oxidation: cup (copper oxidase-like), ctaABT (heme biogenesis and insertion), nuoI and nuoK (NADH complex subunits), sdrA1 (a NADH complex accessory protein) and atpB and atpE (ATP synthetase F0 subunits). The following new genes are predicted to be involved in reduced inorganic sulfur compounds oxidation: a gene cluster (rhd, tusA, dsrE, hdrC, hdrB, hdrA, orf2, hdrC, hdrB) encoding three sulfurtransferases and a heterodisulfide reductase complex, sat potentially encoding an ATP sulfurylase and sdrA2 (an accessory NADH complex subunit). Two different regulatory components are predicted to be involved in the regulation of alternate electron transfer pathways: 1) a gene cluster (ctaRUS) that contains a predicted iron responsive regulator of the Rrf2 family that is hypothesized to regulate cytochrome aa3 oxidase biogenesis and 2) a two component sensor-regulator of the RegB-RegA family that may respond to the redox state of the quinone pool. CONCLUSION: Bioinformatic analysis coupled with gene transcript profiling extends our understanding of the iron and reduced inorganic sulfur compounds oxidation pathways in A. ferrooxidans and suggests mechanisms for their regulation. The models provide unified and coherent descriptions of these processes within the type strain, eliminating previous ambiguity caused by models built from analyses of multiple and divergent strains of this microorganism.


Asunto(s)
Acidithiobacillus/genética , Genoma Bacteriano , Hierro/metabolismo , Compuestos de Azufre/metabolismo , Acidithiobacillus/metabolismo , Biología Computacional , Perfilación de la Expresión Génica , Genes Bacterianos , Metabolómica , Análisis de Secuencia por Matrices de Oligonucleótidos , Oxidación-Reducción , ARN Bacteriano/genética
4.
Microbiology (Reading) ; 150(Pt 7): 2113-2123, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15256554

RESUMEN

The regulation of the expression of the rus operon, proposed to encode an electron transfer chain from the outer to the inner membrane in the obligate acidophilic chemolithoautroph Acidithiobacillus ferrooxidans, has been studied at the RNA and protein levels. As observed by Northern hybridization, real-time PCR and reverse transcription analyses, this operon was more highly expressed in ferrous iron- than in sulfur-grown cells. Furthermore, it was shown by immunodetection that components of this respiratory chain are synthesized in ferrous iron- rather than in sulfur-growth conditions. Nonetheless, weak transcription and translation products of the rus operon were detected in sulfur-grown cells at the early exponential phase. The results strongly support the notion that rus-operon expression is induced by ferrous iron, in agreement with the involvement of the rus-operon-encoded products in the oxidation of ferrous iron, and that ferrous iron is used in preference to sulfur.


Asunto(s)
Acidithiobacillus/metabolismo , Azurina , Azurina/análogos & derivados , Proteínas Bacterianas/metabolismo , Regulación de la Expresión Génica , Operón , Acidithiobacillus/enzimología , Acidithiobacillus/crecimiento & desarrollo , Azurina/genética , Azurina/metabolismo , Proteínas Bacterianas/genética , Grupo Citocromo c/genética , Grupo Citocromo c/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Compuestos Ferrosos/metabolismo , Hierro/metabolismo , Oxidación-Reducción
5.
J Bacteriol ; 184(5): 1498-501, 2002 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-11844787

RESUMEN

DNA sequence analysis and bioinformatic interpretations have identified two adjacent clusters of genes potentially involved in the formation of a bc1 complex and in the maturation of a cytochrome c-type protein in two strains (ATCC 19859 and ATCC 33020) of the acidophilic, chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans (formerly Thiobacillus ferrooxidans). Reverse transcriptase-PCR experiments suggest that the two clusters are organized as operons, and +1 start sites of transcription for the operons have been determined by primer extension experiments. Potential promoters have been identified. The presence of these operons lends support to a recent model of reverse electron flow and is consistent with previous reports of phenotypic switching in this bacterium.


Asunto(s)
Proteínas Bacterianas/genética , Grupo Citocromo c/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Gammaproteobacteria/genética , Operón , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Grupo Citocromo c/genética , Complejo III de Transporte de Electrones/genética , Gammaproteobacteria/metabolismo , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA