Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 109(3-1): 034207, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38632798

RESUMEN

Soliton gases represent large random soliton ensembles in physical systems that display integrable dynamics at leading order. We report hydrodynamic experiments in which we investigate the interaction between two beams or jets of soliton gases having nearly identical amplitudes but opposite velocities of the same magnitude. The space-time evolution of the two interacting soliton gas jets is recorded in a 140-m-long water tank where the dynamics is described at leading order by the focusing one-dimensional nonlinear Schrödinger equation. Varying the relative initial velocity of the two species of soliton gas, we change their interaction strength and we measure the macroscopic soliton gas density and velocity changes due to the interaction. Our experimental results are found to be in good quantitative agreement with predictions of the spectral kinetic theory of soliton gas despite the presence of perturbative higher-order effects that break the integrability of the wave dynamics.

2.
ISA Trans ; 147: 140-152, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38331635

RESUMEN

This paper aims to develop the Euler implicit time-discretization of multivariable sliding-mode controllers to solve the numerical chattering problem without modifying the continuous-time control law. To this end, a continuous-time multi-input plant under a multivariable sliding-mode control is studied, and it is shown that the implicit discretization of the continuous-time sliding-mode controller leads to a multivariable generalized equation with several set-valued terms which is not possible to be solved using the graphical interpretations. Subsequently, an algorithm is proposed to solve such a multivariable generalized equation required to synthesize the implicit sliding-mode control signal at each time step. The proposed algorithm is explained through a simple example accompanied by numerical simulations. The properties of the implicit multivariable sliding-mode controller, e.g., finite-time convergence, gain insensitivity, and chattering suppression, are studied analytically. Afterwards, a multivariable sliding-mode controller is implemented on a digital processor based on the developed algorithm to control a six-input six-output system, i.e., six-component thrust generator, and the results are compared with the case where the continuous-time sliding-mode controller is implemented using the conventional Euler explicit discretization. In the end, the related issues and drawbacks are addressed to be considered in future works.

3.
Sci Rep ; 12(1): 10386, 2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35726005

RESUMEN

We investigate numerically and experimentally the concept of nonlinear dispersion relation (NDR) in the context of partially coherent waves propagating in a one-dimensional water tank. The nonlinear random waves have a narrow-bandwidth Fourier spectrum and are described at leading order by the one-dimensional nonlinear Schrödinger equation. The problem is considered in the framework of integrable turbulence in which solitons play a key role. By using a limited number of wave gauges, we accurately measure the NDR of the slowly varying envelope of the deep-water waves. This enables the precise characterization of the frequency shift and the broadening of the NDR while also revealing the presence of solitons. Moreover, our analysis shows that the shape and the broadening of the NDR provides signatures of the deviation from integrable turbulence that is induced by high order effects in experiments. We also compare our experimental observations with numerical simulations of Dysthe and of Euler equations.

5.
Sci Rep ; 11(1): 4112, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603139

RESUMEN

Wall Shear Stress (WSS) has been demonstrated to be a biomarker of the development of atherosclerosis. In vivo assessment of WSS is still challenging, but 4D Flow MRI represents a promising tool to provide 3D velocity data from which WSS can be calculated. In this study, a system based on Laser Doppler Velocimetry (LDV) was developed to validate new improvements of 4D Flow MRI acquisitions and derived WSS computing. A hydraulic circuit was manufactured to allow both 4D Flow MRI and LDV velocity measurements. WSS profiles were calculated with one 2D and one 3D method. Results indicated an excellent agreement between MRI and LDV velocity data, and thus the set-up enabled the evaluation of the improved performances of 3D with respect to the 2D-WSS computation method. To provide a concrete example of the efficacy of this method, the influence of the spatial resolution of MRI data on derived 3D-WSS profiles was investigated. This investigation showed that, with acquisition times compatible with standard clinical conditions, a refined MRI resolution does not improve WSS assessment, if the impact of noise is unreduced. This study represents a reliable basis to validate with LDV WSS calculation methods based on 4D Flow MRI.

6.
Magn Reson Imaging ; 74: 232-243, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32889090

RESUMEN

Wall shear stress (WSS) is a relevant hemodynamic indicator of the local stress applied on the endothelium surface. More specifically, its spatiotemporal distribution reveals crucial in the evolution of many pathologies such as aneurysm, stenosis, and atherosclerosis. This paper introduces a new solution, called PaLMA, to quantify the WSS from 4D Flow MRI data. It relies on a two-step local parametric model, to accurately describe the vessel wall and the velocity-vector field in the neighborhood of a given point of interest. Extensive validations have been performed on synthetic 4D Flow MRI data, including four datasets generated from patient specific computational fluid dynamics simulations on carotids. The validation tests are focused on the impact of the noise component, of the resolution level, and of the segmentation accuracy concerning the vessel position in the context of complex flow patterns. In simulated cases aimed to reproduce clinical acquisition conditions, the WSS quantification performance reached by PaLMA is significantly higher (with a gain in RMSE of 12 to 27%) than the reference one obtained using the smoothing B-spline method proposed by Potters et al. (2015) method, while the computation time is equivalent for both WSS quantification methods.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiología , Hemodinámica , Imagen por Resonancia Magnética , Resistencia al Corte , Estrés Mecánico , Velocidad del Flujo Sanguíneo , Humanos , Modelos Cardiovasculares
7.
Phys Rev Lett ; 125(26): 264101, 2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33449735

RESUMEN

Soliton gases represent large random soliton ensembles in physical systems that exhibit integrable dynamics at the leading order. Despite significant theoretical developments and observational evidence of ubiquity of soliton gases in fluids and optical media, their controlled experimental realization has been missing. We report a controlled synthesis of a dense soliton gas in deep-water surface gravity waves using the tools of nonlinear spectral theory [inverse scattering transform (IST)] for the one-dimensional focusing nonlinear Schrödinger equation. The soliton gas is experimentally generated in a one-dimensional water tank where we demonstrate that we can control and measure the density of states, i.e., the probability density function parametrizing the soliton gas in the IST spectral phase space. Nonlinear spectral analysis of the generated hydrodynamic soliton gas reveals that the density of states slowly changes under the influence of perturbative higher-order effects that break the integrability of the wave dynamics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA