Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 191: 114911, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37062133

RESUMEN

The number of ships installing ballast water management systems (BWMS) has risen steeply since the Ballast Water Management Convention entered into force. Since June 2022, biological testing is required during commissioning to verify compliance with the Convention. Data from 676 tests (from 2019 to 2022) show substantial improvement over time: the failure rate decreased from ~20 % to ~6 %. Notably, nearly all failures occurred in the largest size class of organisms (≥50 µm). Interestingly, proxy measurements suggest that high concentrations of living organisms in uptake water did not cause the failures. Also, failures determined using "indicative" analysis (here, adenosine triphosphate, ATP) were typically not confirmed by "detailed" analysis (microscopy), suggesting that ATP limits are over-precautionary. Finally, discharges containing high levels of Total Residual Oxidants (TRO) decreased over time. These data highlight the need for ongoing testing-focusing at least on organisms ≥50 µm-to minimize environmental risks from organisms transported in ships' ballast water.


Asunto(s)
Purificación del Agua , Agua , Navíos , Oxidantes
2.
Environ Int ; 144: 106049, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32835923

RESUMEN

Since the 1960 s, there has been a rapid expansion of drilling activities in the central and northern Adriatic Sea to meet the increasing global energy demand. The discharges of organic and inorganic pollutants, as well as the alteration of the sediment substrate, are among the main impacts associated with these activities. In the present study, we evaluate the response of benthic foraminifera to the activities of three gas platforms in the northwestern Adriatic Sea, with a special focus on the Armida A platform for which extensive geochemical data (organic matter, trace elements, polycyclic aromatic hydrocarbons, other hydrocarbons, and volatile organic compounds) are available. The response to disturbance is assessed by analyzing the foraminiferal diversity using the traditional morphology-based approach and by 18S rDNA-based metabarcoding. The two methods give congruent results, showing relatively lower foraminiferal diversity and higher dominance values at stations closer to the platforms (<50 m). The taxonomic compositions of the morphological and metabarcoding datasets are very different, the latter being dominated by monothalamous, mainly soft-walled species. However, compositional changes consistently occur at 50 m from the platform and can be related to variations in sediment grain-size variation and higher concentrations of Ni, Zn, Ba, hydrocarbons and total organic carbon. Additionally, several morphospecies and Molecular Operational Taxonomic Units (MOTUs) show strong correlations with distance from the platform and with environmental parameters extracted from BIOENV analysis. Some of these MOTUs have the potential to become new bioindicators, complementing the assemblage of hard-shelled foraminiferal species detected through microscopic analyses. The congruence and complementarity between metabarcoding and morphological approaches support the application of foraminiferal metabarcoding in routine biomonitoring surveys as a reliable, time- and cost-effective methodology to assess the environmental impacts of marine industries.


Asunto(s)
Foraminíferos , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Biodiversidad , Monitoreo del Ambiente , Foraminíferos/genética , Sedimentos Geológicos , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis
3.
Mar Environ Res ; 146: 24-34, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30890270

RESUMEN

The environmental DNA (eDNA) metabarcoding represents a new promising tool for biomonitoring and environmental impact assessment. One of the main advantages of eDNA metabarcoding, compared to the traditional morphotaxonomy-based methods, is to provide a more holistic biodiversity information that includes inconspicuous morphologically non-identifiable taxa. Here, we use eDNA metabarcoding to survey marine biodiversity in the vicinity of the three offshore gas platforms in North Adriatic Sea (Italy). We isolated eDNA from 576 water and sediment samples collected at 32 sampling sites situated along four axes at increasing distances from the gas platforms. We obtained about 46 million eDNA sequences for 5 markers from nuclear 18S V1V2, 18S V4, 18S 37F and mitochondrial 16S and COI genes that cover a wide diversity of benthic and planktonic eukaryotes. Our results showed some impact of platform activities on benthic and pelagic communities at very close distance (<50 m), while communities for intermediate (125 m, 250 m, 500 m) and reference (1000 m, 2000 m) sites did not show any particular biodiversity changes that could be related to platforms activities. The most significant community change along the distance gradient was obtained with the 18S V1V2 marker targeting benthic eukaryotes, even though other markers showed similar trends, but to a lesser extent. These results were congruent with the AMBI index inferred from the eDNA sequences assigned to benthic macrofauna. We finally explored the relation between various physicochemical parameters, including hydrocarbons, on benthic community in the case of one of the platforms. Our results showed that these communities were not significantly impacted by most of hydrocarbons, but rather by macro-elements and sediment texture.


Asunto(s)
Código de Barras del ADN Taxonómico , Monitoreo del Ambiente/métodos , Animales , Biodiversidad , Eucariontes/genética , Marcadores Genéticos , Italia , Océanos y Mares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA