Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38228244

RESUMEN

Post-traumatic stress disorder (PTSD) and depressive disorders represent two significant mental health challenges with substantial global prevalence. These are debilitating conditions characterized by persistent, often comorbid, symptoms that severely impact an individual's quality of life. Both PTSD and depressive disorders are often precipitated by exposure to traumatic events or chronic stress. The profound impact of PTSD and depressive disorders on individuals and society necessitates a comprehensive exploration of their shared and distinct pathophysiological features. Although the activation of the stress system is essential for maintaining homeostasis, the ability to recover from it after diminishing the threat stimulus is also equally important. However, little is known about the main reasons for individuals' differential susceptibility to external stressful stimuli. The solution to this question can be found by delving into the interplay of stress with the cognitive and emotional processing of traumatic incidents at the molecular level. Evidence suggests that dysregulation in these signalling cascades may contribute to the persistence and severity of PTSD and depressive symptoms. The treatment strategies available for this disorder are antidepressants, which have shown good efficiency in normalizing symptom severity; however, their efficacy is limited in most individuals. This calls for the exploration and development of innovative medications to address the treatment of PTSD. This review delves into the intricate crosstalk among multiple signalling pathways implicated in the development and manifestation of these mental health conditions. By unravelling the complexities of crosstalk among multiple signalling pathways, this review aims to contribute to the broader knowledge base, providing insights that could inform the development of targeted interventions for individuals grappling with the challenges of PTSD and depressive disorders.


Asunto(s)
Trastorno Depresivo , Trastornos por Estrés Postraumático , Humanos , Trastornos por Estrés Postraumático/psicología , Calidad de Vida , Comorbilidad , Salud Mental , Trastorno Depresivo/tratamiento farmacológico
2.
Biol Trace Elem Res ; 201(9): 4456-4471, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36449149

RESUMEN

Copper-induced cardiac injury is not widely reported in spite of its ability to cause oxidative damage and tissue injury. Structural and morphological changes in the cardiac tissue are triggered via oxidative stress and inflammatory responses following copper exposure. The varied and unavoidable exposure of copper through contaminated food and water warrants a safe and effective agent against its harmful effects. Since the heart is highly sensitive to changes in the redox balance, the present study was undertaken to examine the protective effects of melatonin against copper-induced cardiac injury. Sprague Dawley (SD) rats were exposed to 100 ppm of elemental copper via drinking water for 4 months. The cardiac tissue was evaluated for various biochemical, histological, and protein expression studies. Animals exposed to copper exhibited induced oxidative stress and cardiac injury compared to normal control. To this end, we found that melatonin treatment ameliorated copper-induced alterations in tissue oxidative variables like ROS, nitrate, MDA, and GSH. In addition, histological examinations unravelled decreased cardiac muscle dilation, atrophy, and cardiomyopathy in melatonin-treated rats. Furthermore, melatonin-treated rats were associated with reduced tissue copper levels, collagen deposition, α-SMA, and increased HO-1 expression as compared to rats exposed exclusively to copper. Moreover, the levels of NF-κB and cardiac markers such as CK-MB, cTnI, and cTnT were found to be decreased in the melatonin-treated animals. Altogether, melatonin-triggered increase in antioxidant capacity resulting in reduced aggregation of ECM components demonstrates the therapeutic potential of melatonin in the treatment of cardiac injury and tissue fibrosis.


Asunto(s)
Melatonina , Animales , Ratas , Antioxidantes/farmacología , Cobre/toxicidad , Matriz Extracelular , Melatonina/farmacología , Estrés Oxidativo , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA