RESUMEN
Serious concerns have arisen regarding urbanization processes in western Amazônia, which result in the creation of artificial habitats, promoting the colonization of malaria vectors. We used structural equation modelling to investigate direct and indirect effects of forest cover on larval habitats and anopheline assemblages in different seasons. We found 3474 larvae in the dry season and 6603 in the rainy season, totalling ten species and confirming the presence of malaria vectors across all sites. Forest cover had direct and indirect (through limnological variables) effects on the composition of larval anopheline assemblages in the rainy season. However, during the dry season, forest cover directly affected larval distribution and habitat variables (with no indirect affects). Additionally, artificial larval habitats promote ideal conditions for malaria vectors in Amazonia, mainly during the rainy season, with positive consequences for anopheline assemblages. Therefore, the application of integrated management can be carried out during both seasons. However, we suggest that the dry season is the optimal time because larval habitats are more limited, smaller in volume and more accessible for applying vector control techniques.
Asunto(s)
Anopheles , Ecosistema , Bosques , Mosquitos Vectores , Estaciones del Año , Animales , Anopheles/crecimiento & desarrollo , Brasil , Geografía , Larva/crecimiento & desarrollo , Malaria/transmisión , Mosquitos Vectores/crecimiento & desarrollo , LluviaRESUMEN
Herbivory is ubiquitous. Despite being a potential driver of plant distribution and performance, herbivory remains largely undocumented. Some early attempts have been made to review, globally, how much leaf area is removed through insect feeding. Kozlov et al., in one of the most comprehensive reviews regarding global patterns of herbivory, have compiled published studies regarding foliar removal and sampled data on global herbivory levels using a standardized protocol. However, in the review by Kozlov et al., only 15 sampling sites, comprising 33 plant species, were evaluated in tropical areas around the globe. In Brazil, which ranks first in terms of plant biodiversity, with a total of 46,097 species, almost half (43%) being endemic, a single data point was sampled, covering only two plant species. In an attempt to increase knowledge regarding herbivory in tropical plant species and to provide the raw data needed to test general hypotheses related to plant-herbivore interactions across large spatial scales, we proposed a joint, collaborative network to evaluate tropical herbivory. This network allowed us to update and expand the data on insect herbivory in tropical and temperate plant species. Our data set, collected with a standardized protocol, covers 45 sampling sites from nine countries and includes leaf herbivory measurements of 57,239 leaves from 209 species of vascular plants belonging to 65 families from tropical and temperate regions. They expand previous data sets by including a total of 32 sampling sites from tropical areas around the globe, comprising 152 species, 146 of them being sampled in Brazil. For temperate areas, it includes 13 sampling sites, comprising 59 species. Thus, when compared to the most recent comprehensive review of insect herbivory (Kozlov et al.), our data set has increased the base of available data for the tropical plants more than 460% (from 33 to 152 species) and the Brazilian sampling was increased 7,300% (from 2 to 146 species). Data on precise levels of herbivory are presented for more than 57,000 leaves worldwide. There are no copyright restrictions. Please cite this paper when using the current data in publications; the authors request to be informed how the data is used in the publications.