Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39282356

RESUMEN

We deployed the Blended Genome Exome (BGE), a DNA library blending approach that generates low pass whole genome (1-4x mean depth) and deep whole exome (30-40x mean depth) data in a single sequencing run. This technology is cost-effective, empowers most genomic discoveries possible with deep whole genome sequencing, and provides an unbiased method to capture the diversity of common SNP variation across the globe. To evaluate this new technology at scale, we applied BGE to sequence >53,000 samples from the Populations Underrepresented in Mental Illness Associations Studies (PUMAS) Project, which included participants across African, African American, and Latin American populations. We evaluated the accuracy of BGE imputed genotypes against raw genotype calls from the Illumina Global Screening Array. All PUMAS cohorts had R 2 concordance ≥95% among SNPs with MAF≥1%, and never fell below ≥90% R 2 for SNPs with MAF<1%. Furthermore, concordance rates among local ancestries within two recently admixed cohorts were consistent among SNPs with MAF≥1%, with only minor deviations in SNPs with MAF<1%. We also benchmarked the discovery capacity of BGE to access protein-coding copy number variants (CNVs) against deep whole genome data, finding that deletions and duplications spanning at least 3 exons had a positive predicted value of ∼90%. Our results demonstrate BGE scalability and efficacy in capturing SNPs, indels, and CNVs in the human genome at 28% of the cost of deep whole-genome sequencing. BGE is poised to enhance access to genomic testing and empower genomic discoveries, particularly in underrepresented populations.

2.
BMC Genomics ; 20(1): 613, 2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31351464

RESUMEN

BACKGROUND: Histone deacetylases (HDACs) are the proteins responsible for removing the acetyl group from lysine residues of core histones in chromosomes, a crucial component of gene regulation. Eleven known HDACs exist in humans and most other vertebrates. While the basic function of HDACs has been well characterized and new discoveries are still being made, the transcriptional regulation of their corresponding genes is still poorly understood. RESULTS: Here, we conducted a computational analysis of the eleven HDAC promoter sequences in 25 vertebrate species to determine whether transcription factor binding sites (TFBSs) are conserved in HDAC evolution, and if so, whether they provide useful information about HDAC expression and function. Furthermore, we used tissue-specific information of transcription factors to investigate the potential expression patterns of HDACs in different human tissues based on their transcription factor binding sites. We found that the TFBS profiles of most of the HDACs were well conserved in closely related species for all HDAC promoters except HDAC7 and HDAC10. HDAC5 had particularly strong conservation across over half of the species studied, with nearly identical profiles in the primate species. Our comparisons of TFBSs with the tissue specific gene expression profiles of their corresponding TFs showed that most HDACs had the ability to be ubiquitously expressed. A few HDAC promoters exhibited the potential for preferential expression in certain tissues, most notably HDAC11 in gall bladder, while HDAC9 seemed to have less propensity for expression in the nervous system. CONCLUSIONS: In general, we found evolutionary conservation in HDAC promoters that seems to be more prominent for the ubiquitously expressed HDACs. In turn, when conservation did not follow usual phylogeny, human TFBS patterns indicated possible functional relevance. While we found that HDACs appear to uniformly expressed, we confirm that the functional differences in HDACs may be less a matter of location of activity than a question of which proteins and which acetyl groups they may be acting on.


Asunto(s)
Secuencia Conservada , Histona Desacetilasas/genética , Regiones Promotoras Genéticas , Animales , Sitios de Unión , Humanos , Factores de Transcripción , Vertebrados/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA