Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(2): e24682, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38304843

RESUMEN

The study addresses the characteristics of a climate service targeting tourists and discusses the evaluation of its products with a particular focus on the thermal stress information. Furthermore, an assessment of the impact of input data on the accuracy and relevance of the thermal stress product is presented. The thermal stress is expressed through UTCI (Universal Thermal Climate Index) and it is computed from UERRA regional reanalysis and E-OBS gridded dataset, for summer season during 2011-2018. The analysis targets 10 cities with different characteristics located in Romania and Italy. It focuses on the impact of three temperature-related input data (instantaneous temperature at 12:00 UTC, daily maximum and daily mean temperature) on the thermal stress intensity. The results show that differences up to 4 days in the pronounced thermal stress category may appear when employing daily maximum temperature compared to the use 12:00 UTC instantaneous temperature, while the use of daily mean temperature leads to strong underestimation of thermal stress in this category. The findings are of interest in defining the technical choices of products to be incorporated in a climate service for tourism in order to assure a good user uptake.

2.
Environ Res ; 234: 116531, 2023 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-37394169

RESUMEN

Circulatory-system diseases (CSDs) are responsible for 50-60% of all deaths in Romania. Due to its continental climate, with cold winters and very warm summers, there is a strong temperature dependence of the CSD mortality. Additionally, within its capital Bucharest, the urban heat island (UHI) is expected to enhance (reduce) heat (cold)-related mortality. Using distributed lag non-linear models, we establish the relation between temperature and CSD mortality in Bucharest and its surroundings. A striking finding is the strong temperature-related response to high urban temperatures of women in comparison with men from the total CSDs mortality. In the present climate, estimates of the CSDs attributable fraction (AF) of mortality at high temperatures is about 66% higher in Bucharest than in its rural surroundings for men, while it is about 100% times higher for women. Additionally, the AF in urban areas is also significantly higher for elderly people, and for those with hypertensive and cerebrovascular diseases than in the rural surroundings. On the other hand, in rural areas, men but especially women are currently more vulnerable with respect to low temperatures than in the urban environment. In order to project future thermal-related mortality, we have used five bias-corrected climate projections from regional circulation models under two climate-change scenarios, RCP4.5 and RCP8.5. Analysis of the temperature-mortality associations for future climate reveals the strongest signal under the scenario RCP8.5 for women, elderly people as well as for groups with hypertensive and cerebrovascular diseases. The net AF increase is much larger in urban agglomeration for women (8.2 times higher than in rural surroundings) and elderly people (8.5 times higher than in rural surroundings). However, our estimates of thermal attributable mortality are most likely underestimated due to the poor representation of UHI and future demography.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Femenino , Humanos , Masculino , Anciano , Calor , Ciudades , Caracteres Sexuales , Clima , Temperatura , Enfermedades Cardiovasculares/epidemiología , Cambio Climático , Mortalidad
3.
Ann N Y Acad Sci ; 1146: 50-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19076411

RESUMEN

The Northern Hemisphere annular mode, also known as the Arctic Oscillation/North Atlantic Oscillation (AO/NAO) is a dominant atmospheric mode in the Northern Hemisphere winter that influences climate fluctuations from the eastern seaboard of the United States to Siberia and from the Arctic to the subtropical Atlantic. After almost a century of scientific investigation, the fundamental mechanisms determining the evolution of the AO/NAO are not yet completely understood. The ocean is favored as the most likely forcing of atmospheric variability, given the time scales of oceanic circulation and its large heat capacity. Our analyses of snow cover, soil temperatures, zonal winds, and geopotential heights identify the effect of land-atmosphere interaction over Eurasia on Northern Hemisphere atmospheric circulation, explaining the predictive signal that links fluctuations of April-October snow cover with the following winter AO/NAO phases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA