Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 10(6): 5185-5195, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29363302

RESUMEN

The fabrication of pressure sensors based on reduced graphene oxide (rGO) as the sensing material is challenging due to the intrinsic hydrophobic behavior of graphene oxide inks as well as the agglomeration of graphene oxide flakes after reduction. Hydrazine (a reducing agent) and a dual-component additive comprising benzisothiazolinone and methylisothiazolinone in appropriate proportion were used to synthesize a rGO ink with a hydrophilic nature. Utilizing this hydrophilic rGO ink mixed with multiwalled carbon nanotubes (MWNTs), a very simple, low-cost approach is demonstrated for the fabrication of a pressure sensor based on polyurethane (PU) foam coated with the MWNT-rGO ink (MWNT-rGO@PU foam). The MWNT-rGO@PU foam-based devices are shown to be versatile pressure sensors with the potential to detect both small-scale and large-scale movements. At low pressure (below 2.7 kPa, 50% strain), the formation of microcracks that scatter electrical charges results in a detectable increase in resistance suitable for detecting small-scale motion. At a higher pressure, the compressive contact of the coated faces of the PU foam results in a sharp decrease in resistance suitable for monitoring of large-scale motion. Moreover, these sensors exhibit good flexibility and reproducibility over 5000 cycles. The versatility of this sensor has been demonstrated in a wide range of applications, such as speech recognition, health monitoring, and body motion detection. The significant advantages of this sensor are that its cost is low, it is easy to fabricate, and it has a versatility that renders it favorable to health-monitoring applications.

2.
ACS Appl Mater Interfaces ; 8(9): 6277-85, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26891093

RESUMEN

Steel was anodized in 10 M NaOH to enhance its surface texture and internal surface area for application as an electrode in supercapacitors. A mechanism was proposed for the anodization process. Field-emission gun scanning electron microscopy (FEGSEM) studies of anodized steel revealed that it contains a highly porous sponge like structure ideal for supercapacitor electrodes. X-ray photoelectron spectroscopy (XPS) measurements showed that the surface of the anodized steel was Fe2O3, whereas X-ray diffraction (XRD) measurements indicated that the bulk remained as metallic Fe. The supercapacitor performance of the anodized steel was tested in 1 M NaOH and a capacitance of 18 mF cm(-2) was obtained. Cyclic voltammetry measurements showed that there was a large psueudocapacitive contribution which was due to oxidation of Fe to Fe(OH)2 and then further oxidation to FeOOH, and the respective reduction of these species back to metallic Fe. These redox processes were found to be remarkably reversible as the electrode showed no loss in capacitance after 10000 cycles. The results demonstrate that anodization of steel is a suitable method to produce high-surface-area electrodes for supercapacitors with excellent cycling lifetime.

3.
Nat Nanotechnol ; 9(10): 741-2, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25286263
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA