RESUMEN
Due to their renewable and sustainable nature, biodiesel blends boost studies predicting their stability during storage. Besides chemical degradation, biodiesel is more susceptible to biodegradation due to its raw composition. The aim of this work was to evaluate the deteriogenic potential (growth and degradation) of Pseudallescheria boydii and Meyerozyma guilliermondii in degrading pure diesel (B0), pure biodiesel (B100), and a B10 blend in mineral medium during storage. The biodeterioration susceptibility at different fuel ratios and in BH minimal mineral medium were evaluated. The biomass measurements of P. boydii during 45 days indicated higher biomass production in the B10 blend. The growth curve of M. guilliermondii showed similar growth in B10 and B100. Although there was no significant production of biosurfactant, lipase production was detected in the tributyrin agar medium of both microorganisms. The main compounds identified in the aqueous phase by GC-MS were alcohols, esters, acids, sulfur, ketones, and phenols. The results showed that P. boydii grew at the expense of fuels, degrading biodiesel esters, and diesel hydrocarbons. M. guilliermondii grew in B100 and B10; however, degradation was not detected.
Asunto(s)
Ascomicetos/fisiología , Biocombustibles/microbiología , Gasolina/microbiología , Biomasa , Brasil , Factores de TiempoRESUMEN
INTRODUCTION: Irisin has recently been described as a novel myokine, which reduces visceral obesity and improves glucose metabolism in mice. Thus, polymorphisms in the gene encoding irisin, fibronectin type III domain containing 5 (FNDC5), may be associated with type 2 diabetes mellitus (T2DM) and related disorders. However, to date, no study has investigated the association between FNDC5 polymorphisms and susceptibility to T2DM. OBJECTIVE: To investigate the association of FNDC5 rs3480 (A/G) and rs1746661 (G/T) polymorphisms, alone or in combination, with T2DM and its clinical features. METHODS: We analyzed 1006 T2DM patients and 434 nondiabetic subjects. Polymorphisms were genotyped by real-time PCR using TaqMan MGB probes. Haplotypes constructed from the combination of rs1746661 and rs3480 polymorphisms were inferred using the Phase 2.1 program. RESULTS: Genotype, allele and haplotype frequencies of rs1746661 and rs3480 polymorphisms did not differ significantly between nondiabetic subjects and T2DM patients. Women with T2DM carrying the G allele of rs3480 showed increased HbA1c levels compared with A/A carriers, adjusted for age. The T allele of rs1746661 was associated with increased systolic blood pressure, total cholesterol and LDL-cholesterol and decreased HDL-cholesterol in women with T2DM, adjusted for covariates. Moreover, prevalence of hypercholesterolemia was higher in women carrying the T allele of rs1746661 than in G/G carriers (72.4% vs. 58.7%, OR=2.010, 95% CI=1.210-3.390), but it was not significantly different in men. CONCLUSIONS: These results indicate that, although not associated with T2DM, the G allele of rs3480 appears to be associated with increased HbA1c, while the T allele of rs1746661 appears to be associated with higher systolic blood pressure and dyslipidemia in women with T2DM.